Plant-Water-Hydrology Relationships in Native Trees and Invasive Giant Reed (*Arundo donax*) in a Southern California Floodplain

The Santa Clara River is one of the most dynamic river systems in southern California

There are multiple threats to our riparian ecosystems

Climate change is leading to warmer temperatures

"The Great California Drought"

The 2012-2017 drought was the worst in 1200 years (Griffin & Anchukaitis 2014)

Drought + hotter temps = Global change-type drought or "hot" drought

Arundo donax is on the list of "100 of the World's Worst Invasive Alien Species"

- Grows >13 ft tall
- In a hotter + drier future, water will be even more limiting, which
- makes understanding the water use of Arundo vs. native riparian
- trees essential for successful restoration.
- Suspected of altering hydrology and reducing groundwater availability

Research Questions

- How do plant water relations and hydraulics compare between Arundo and native species?
 - Are native or invasive species more equipped to deal with future environmental changes?
 - Does Arundo use more water than native species?
- Can we use this knowledge to inform restoration efforts?
 - If we eradicate Arundo and restore native vegetation, what will the water savings be?

Working across scales

Patterns of stomatal conductance vary broadly among species and across seasons

Arundo has remarkably high leaf-level water use efficiency

Trait	Mean ± SE		Comparison (n=78)
Photosynthesis (A _{max})	9.91 ± 2.45	=	9.42 (\bar{x})
Stomatal conductance (g_s)	55.78 ± 17.62	<	42 (min); 142 (\bar{x})
Water use efficiency (A/g_s)	194.81 ± 14.0	>>	142 (max); 59.4 (\bar{x})

Water potentials diverge during summer drought but converge with winter rains

Arundo maintains high water potentials across seasons

This may be indicative of access to groundwater

Arundo also maintains high transpiration rates when water potentials are high (less negative)

(analysis is on-going...)

Overall, stomatal conductance declines with lower water potentials

There was coordination among xylem and stomatal traits

Species with more resistant xylem were able to maintain stomatal conductance at more negative water potentials.

Embolisms in the vascular system: Bad for people and plants

Bubbles in xylem conduits

- Image: Sperry lab
- Embolisms are air bubbles that block water flow through vessels
- Embolised vessels cannot move water
- We can quantify xylem vulnerability to cavitation

Cutting edge methods:

Using high resolution imagery to visual cavitation

Continuing Work & Future Directions

Conclusions

- Individuals leaves of Arundo are much more water use efficient than native riparian tree, but...
- Stand-level transpiration is high (but data analysis is on-going...)
- The Santa Clara River and its tributaries offer perhaps our best chance for protecting river habitat in southern California.