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Riparian Restoration 

How will eco-evolutionary relationships impact 
dynamics of the tamarisk-Diorhabda interaction 
and riparian ecosystems? 

Questions  (to complement restoration efforts) 
 
1. Which beetles will be in the system? 

Bioinformatics 
2. How often and when will they defoliate?    

Phenology and phenotype tracking 
3. How can we manipulate populations? 

Semiochemicals to modify beetle behavior 

For another day… 

Science of biocontrol 

“Science is ahead of practice” Peter Skidmore 2-04-20 



Amanda Stahlke 

2. Genomics and bioinformatics used in 
understanding the phenology and evolution 
of Diorhabda 

Stahlke AR, Özsoy AZ, Bean DW, Hohenlohe PA. (2019) Mitochondrial 
genome sequences of Diorhabda carinata and Diorhabda carinulata, two 
beetle species introduced to North America for biological control. 
Microbiology Resource Announcements 8:e00690-19. 
https://doi.org/10.1128/MRA.00690-19. 

1. Tracking Diorhabda populations 
• Species 
• Ecotypes 
• Populations 
• Genes of interest 
• Alleles of interest 

Diorhabda elongata Diorhabda carinata Diorhabda carinulata 

Bioinformatics 



The first weed biocontrol agent genome 
assemblies 

1 

A B A B 

2 Shotgun (Illumina) 10X Linked reads 
(Illumina) 

Cost ~$6,000 

# contigs 16,291 
Largest 
contig  8.74 Mbp 

Collaboration 

# contigs 179 

Largest contig  43.31 Mbp 
3 

http://i5k.github.io/ag100pest 

Pretty good for a non-model! 

A gold standard 
PacBio SMRT sequencing 



When and where will Diorhabda be present in 
defoliating numbers? 

Field surveys and models 



Levi Jamison 

Tracking beetle movement and phenology on a 
landscape level 

Jamison, L.R, Johnson, M.J., Bean, D.W. and C. van Riper III 
(2018) Phenology and abundance of northern tamarisk beetle, 
Diorhabda carinulata, affecting defoliation of Tamarix. 
Southwestern Entomologist 43: 571-584 
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Lower Colorado River 

We have constructed a phenology 
model based on degree-days which 
incorporates photoperiodic cues into 
predicting developmental decisions. 

Fritzi Grevstad Len Coop 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj-zIWylZ7WAhXr44MKHTwmDqAQjRwIBw&url=http://bpp.oregonstate.edu/grevstad/&psig=AFQjCNHnHWutHx-BEwllwxflsivweF5fkg&ust=1505254820375520
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Diorhabda carinulata phenology model based on thermal currency (degree 
days) as well as developmental periodism (Critical Day Length or CDL) 

A1 A2 A3 A5 A6 A4 A7 
Emergence of adults 



9

10

11

12

13

14

15

16

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Da
y 

Le
ng

th
 (h

) 

Cumulative Degree-Days 
(2016) 

St. George
Big Bend
Cibola

7 generations 

Diorhabda carinulata phenology model based on thermal currency (degree 
days) as well as developmental periodism (Critical Day Length or CDL) 

A1 A2 A3 A5 A6 A4 A7 

CDL 14 hrs 
Longer days cue 
reproductive activity 
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Generation number adults 
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Defoliation at the Cibola NWR, third generation larvae 

The Toms (Dudley and Ryan) at Cibola site setup Phenology camera at Cibola 



Manipulating Diorhabda populations (i.e. beetle herding) 
1. Attracting beetles to areas where control is a top priority 
2. Keeping beetles away from sensitive areas (SWFL habitat) 

Allard Cossé checks field trials of attractants 
Lovelock, NV, 2004 

Bob Bartelt monitors pheromone-
baited trap 



Alex Gaffke 
Beetle herding using behaviorally active  
compounds (semiochemicals) in Diorhabda 

Gaffke, A. M., S. E. Sing, T. L. Dudley, D. W. Bean, J. A. Russak, A. Mafra-Neto, P. A. Grieco, R. K. D. Peterson, 
and D. K. Weaver.  2019. Field demonstration of a semiochemical treatment that enhances Diorhabda carinulata 
biological control of Tamarix spp. Scientific Reports 9: 1305 https://doi.org/10.1038/s41598-019-49459-5.(53) 

Gaffke, A. M., S. E. Sing, T. L. Dudley, D. W. Bean, J. A. Russak, A. Mafra-Neto, P. A. Grieco, R. K. D. Peterson, 
and D. K. Weaver.  2018. Semiochemicals to enhance herbivory by Diorhabda carinulata aggregations in 
saltcedar (Tamarix spp.) infestations. Pest Management Science 74(6): 1494 -1503. 
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Pheromone 
treatment 
2013 
 

Impacts of 
pheromone 
treatment: 
high levels 
of dieback 
 

Untreated 
Plants with 
no impacts 
from 
Diorhabda 
 



Use “pull” to protect critical habitat 
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Push/ Pull chemical herding 



Diorhabda spp. are aware of egg/larva 
densities and reproductive adults will bypass 
trees with large numbers of eggs/larvae 
 
Volatile compounts may signal conspecific 
density, be repellent to reproductive adults 



Develop chemical “push” to keep beetles out of 
critical habitat 



    Emission rate   

Component Mean 
(ng/beetle/day) 

Standard Error N 

Adult males 0.70 ± 0.20 10 
  

Adult females 2.63 ± 1.10 10 

Control foliage 
  

0.0 ± 0.0 4 

Mechanically damaged 
foliage 
  

0.0 ± 0.0 4 

Adults without foliage 0.0 ± 0.0 4 

 
 

 

Quantities of 4-oxo-(E)-2-hexanal released from Tamarix foliage plus adult D. 
carinulata, beetles alone and mechanically damaged foliage as controls 



Behavioral bioassay  



Behavioral bioassay  
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Repellent compounds are currently under investigation 



Repellent Field Trials 
Location Date  Mean Adult Capture ± SE  

Control  Treatment P 

Saltcreek, 
CO 

07/14/2018 23.1 ± 8.5 9.6 ± 3.1 0.04 

Rangely, CO 7/31/2018 0.36 ± 0.2 0.52 ± 0.2 0.5 

Cheney, CO 08/04/2018 1.7 ± 0.6 1.0 ± 0.3 0.2 

Blythe, CA 08/20/2018 5.0 ± 1.0 1.9 ± 0.6 0.04 

Blythe, CA 08/27/2018 1.4 ± 1.1 1.6 ± 0.4 0.35 



Cibola NWR 

Imperial NWR 

1. Sample beetles in the 
region.  Determine type 
using sequence information 

2. Perform developmental 
/physiological tests to 
confirm appropriate model 
parameters 

3. Track with on-the-ground 
sampling 

4. Predict timing of 
appearance near critical 
habitat 



Cibola NWR 

Imperial NWR 

1. Sample beetles in the 
region.  Determine type 
using sequence information 

2. Perform developmental 
/physiological tests to 
confirm appropriate model 
parameters 

3. Track with on-the-ground 
sampling 

4. Predict timing of 
appearance near critical 
habitat 

Yuma Wash 



Repellent 

Pheromone 

Critical Nesting Habitat 

A Push/Pull schematic 
1. Determine which beetles are in the area 
2. Predict and track phenology 
3. Deploy push/pull strategy 
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Repellent 

Pheromone 

Critical Nesting Habitat 

A Push/Pull schematic 
1. Determine which beetles are in the area 
2. Predict and track phenology 
3. Deploy push/pull strategy 



Thanks to 
REW for the conference 
Everyone who has worked on these projects 
Wildlife area technicians and managers (especially at Cibola and Imperial 2019) 
Scientists (especially my coauthors) 
Palisade Insectary and the CDA (visit us tomorrow) 
 



Collection of volatiles from tamarisk and feeding beetles 

Collector tube with  
foliage and beetles 

• Draw volatiles emitted 
from feeding beetles 
into filter of porous 
polymer ("Super-Q") 
with gentle vacuum; 
later on, rinse filter with 
solvent. 

• On the plus side:  
Beetles + food is a 
"natural" situation; good 
chance of pheromone 
emission. 

• On the minus side:  plant 
compounds will also be 
collected.  
 

Close up of Super-Q filter 

Beetles on 
foliage 
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GC profiles of collected volatiles from feeding D. elongata 
Males feeding on salt cedar 

Females feeding on salt cedar 
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GC-coupled electroantennographic detection (GC-EAD)  



Electrophysiology setup (GC-EAD) 



GC-EAD Response to Volatiles Collected from Feeding Male D. elongata 

EAD response (female antenna) 
Both “A” and “B” strongly 
detected by antennae 

0 1 2 3 4 5 6 7 8 9 10 
Time after injection (min) 

"A" 
"B" 

GC response 

Solvent 
peak 



Mass spectra of male-specific compounds and ID’s, based on MS 
library and analytical comparison with standards 

"A" 

"B" 

C H O 

C H 2 O H 

(2E,4Z)-2,4-heptadienal 
 = “2E,4Z-7:Ald” 

(2E,4Z)-2,4-heptadien-1-ol 
= “2E,4Z-7:OH” 
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Defoliation and beetle stage, San Juan, late July 2010 
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