## PREDICTORS OF PLANT FUNCTIONAL TRAITS IN A NOVEL ECOSYSTEM

Alexander R. B. Goetz, Annie L. Henry, Eduardo González, and Anna A. Sher



## Background



## Main research question

Do abiotic site conditions affect habitat suitability for the Southwestern willow flycatcher, as measured by functional traits?

## Functional traits

|             | A       | В        | С        | D              | AP               | AQ          | AR           | AS                | AT              | AU             | AV           | AW             | AX            | AY              | AZ             | BA             | BB              | BC          |         |
|-------------|---------|----------|----------|----------------|------------------|-------------|--------------|-------------------|-----------------|----------------|--------------|----------------|---------------|-----------------|----------------|----------------|-----------------|-------------|---------|
| 1           |         |          |          |                | CHFR3            | CHTE2       | CHLI3        | CHNA2/ERNAN       | CIIN            | CIAR4          | CIVU         | CLLI2          | COUM          | COAR4           | COCA5          | COSE16         | DACA7           | CYDA        | D       |
| <b>a</b> 2  |         |          |          |                | Che fre          | Cho ten     | Chr lin      | Chr nau           | Cic int         | Cir arv        | Cir vul      | Cle lin        | Com umb       | Con arv         | Con can        | Cor ser        | Dal can         | Cyn dac     | D       |
| 11          |         |          |          | Family         | Chenopodiacea    | Brassicacea | Asteraceae   | Asteraceae        | Asteraceae      | Asteraceae     | Asteraceae   | Ranunculacea   | Santalaceae   | Convolvulaceae  | Asteraceae     | Cornaceae      | Fabaceae        | Poaceae     | Si      |
| 12          |         |          |          | Genus          | Chenopodium      | Chorispora  | Chrysotham   | n Chrysothamnu    | Cichorium       | Cirsium        | Cirsium      | Clematis       | Comandra      | Convolvulus     | Conyza         | Cornus         | Dalea           | Cynodon     | D       |
| 13          |         |          |          | Species        | fremontii / rubi | tenella     | linifolius   | nauseosus         | intybus         | arvense        | vulgare      | ligusticifolia | umbellata     | arvensis        | canadensis     | sericea        | candida         | dactylon    | st      |
| 14          |         |          |          | Common         | Fremont's goos   | Crossflower | Spearleaf ra | ol Rubber rabbitb | Chicory / Cornf | Canada thistle | Bull thistle | Western whit   | Bastard toadf | Field bindweed  | Canadian horse | Redosier dogwo | White prairie c | Bermudagras | ss / Ji |
| <b>▲</b> 15 |         |          |          | Nativity       | Native           | Exotic      | Native       | Native            | Exotic          | Exotic         | Exotic       | Native         | Native        | Exotic          | Native         | Native         | Native          | Exotic      | E:      |
| ₹ 24        | Traits  | l would  | really   | Duration       | Annual           | Annual      | Perennial    | Perennial         | Perennial       | Perennial      | Annual       | Perennial      | Perennial     | Perennial       | Annual         | Perennial      | Perennial       | Perennial   | Α       |
| 25          | Trait n | ot found | after si | LISDA code     | CHERS            | CHTF2       | CHU3         | CHNA2/FRNAN       | CIIN            | CIARA          | CIVIT        | CLU2           | COLIM         | COAR/I          | COCAS          | COSE16         | DΔCΔ7           | CVD4        | n       |
| 26          | will ne | ed more  | attentic | Species co     | Che_fre          | Cho_ten     | Chr_lin      | Chr_nau           | Cic_int         | Cir_arv        | Cir_vul      | Cle_lin        | Com_umb       | Con_arv         | Con_can        | Cor_ser        | Dal_can         | Cyn_dac     | D       |
| 27          |         |          |          | Search Co      | Alex             | Kayleigh    | Kayleigh     | Kayleigh          | Alex            | Kayleigh       | Kayleigh     | Sarah          | Alex          | Sarah & Kayleig | Palmquist      | Alex           | Alex            | Palmquist   | K'      |
| 30          | SLA2    | Specific | centim   | cm2g-1         |                  |             |              |                   | 368.321         |                |              |                |               | 172.15          | 270.2702703    |                | 81.28           | 2           | 50      |
| 31          | RGR     | Relative | grams    | g g-1day-1     |                  |             |              | 0.0037            | 0.1725          | 0.11           | 0.124        |                |               | 0.107           | 0.26           | 0.097          |                 |             |         |
| 32          | Salin_r | Maxim    | deciSie  | dS/m           |                  |             | 1            | 0 6               |                 |                |              |                |               | 16              | 4              | 100            |                 | 6           | 6.9     |
| 33          | Seed_v  | Weight   | Weigh    | grams          | 0.395            | 1.2         | 1.           | 8 1.176           | 1.2             | 1.3            | 2.6          | 2.62           | 112.523       | 15.1            | 0.08           | 27.0963        | 1.3             | 0           | 0.2     |
| 34          | rt_dpt  | Maxim    | Maxim    | meters         |                  |             |              |                   | 0.2             | 6.75           | 3.25         |                |               | 3               | 0.33           |                | 2.1336          | 1           | 1.5     |
| 35          | HT_ma   | Average  | Averag   | meters         | 0.54             | 0.35        | 2.           | 5 1.22            | 0.6096          | 0.825          | 0.9          | 0.305          | 0.2           | 0.048           | 1.52           | 2              | 0.43            | 0.4         | 43      |
| 36          | Anae_   | Anaero   | Anaer    | 1 - None, 1    | 1                | 4           |              | 1                 | 2               | 2              |              | 1              |               | 2               | 2              |                |                 |             | 4       |
| 37          | Drgt_T  | Drough   | Drougl   | 1 - None, 2    | 4                |             |              | 4                 | 3               | 1              | 2            | 3              | 4             | 4               | 2              | 4              | 4               |             | 3       |
| 38          | Fire_to | Fire tol | Fire to  | 1 - None, 2    | 4                |             |              | 2                 | 3               | 3              |              | 3              | 4             | 4               | 2              | 4              | 4               |             | 4       |
| 39          | Mois_   | Moistu   | Moistu   | 2 - Low, 3 -   |                  |             |              | 3                 | 4               | 4              |              | 3              |               | 2               | 3              | 4              |                 |             | 4       |
| 40          | Salin_t | Salinity | Salinit  | 1 - None, 2    | 4                |             |              | 4 3               | 1               | 4              |              | 2              |               | 4               | 2              | 3              |                 |             | 3       |
| 41          | Shade   | Shade 1  | Shade    | 1 - Low, 2 -   | 3                | 1           |              | 1                 | 1               | 1              | 1            | 2              |               | 1               | 1              | 1              | 1               |             | 1       |
| 42          | Growt   | Growth   | Growt    | 1 - Slow, 2 -  |                  | 3           |              | 1                 | 3               | 3              |              | 2              |               |                 | 3              | 3              |                 |             | 3       |
| 43          | Lifespa | Lifespa  | Expect   | 1 - Annual,    | 1                | 1           |              | 4                 | 2               | 3              | 2            | 4              | 2             | 3               | 1              | 2              | 3               |             | 4       |
| 44          | Sex_re  | Ability  | Sexual   | 1 - Yes, 2 - I | 1                | 1           |              | 1 1               | 1               | 1              | 1            | 1              | 1             | 1               | 1              | 1              | 1               |             | 1       |
| 45          | Veg_re  | Ability  | Vegeta   | 1 - Yes, 2 - I | 2                | 2           |              | 2 2               | 2               | 1              |              | 1              | 1             | 1               | 2              | 1              | 1               |             | 1       |
| 46          | Spread  | Spread   | Vegeta   | 1 - None, 2    | 1                | 1           |              | 1 1               | 1               | 4              |              | 3              |               | 4               | 1              | 3              |                 |             | 4       |
| 47          | Respro  | Respro   | Resprc   | 1 - Yes, 2 - I | 2                |             |              | 1                 | 2               | 2              | 2            | 1              |               | 1               | 2              | 1              | 1               |             | 2       |
| 48          | Actual  | Bloom    | Range    | Beginning r    | Spring-summer    | Mar-May     | Aug-Sep      | Jul-Oct           | Mid Summer      | Jun-Aug        | Jun - Sep    | Mid Summer     | May-?         | Jun-Sep         | Apr-Nov        | May-June       | July-Sep        | Mar-Oct     | Jı      |
| 49          | numer   | ic bloom | period   | i              | 3-8              | 3-5         | 8-           | 9 7-10            | 6-8             | 6-8            | 6-9          | 6-8            | 5             | 6-9             | 4-11           | 5-6            | 7-9             | 3-:         | 10      |

See: Palmquist et al. 2016, Henry et al. in prep

## Specific Leaf Area (SLA)

- Area per dry mass of leaf
- Considered one of the most important functional traits
- Reflects relative growth rate, stress tolerance, leaf longevity
- Correlates with temperature, light availability, water availability



Weiher et al. 1999 Poorter et al. 2009

## Branching structure

- Most important functional trait for SWFL habitat
- SWFL requires:
- Dense branches 4-6 m above ground
- Intact canopy



## To address today

Does specific leaf area and branching structure of *Tamarix* vary with site environmental conditions?

Can we use published literature values for specific leaf area of *Tamarix*?

#### Methods

- Sampled 34 sites in and around Grand County, UT
- Collected 10 leaves per 10m transect, 5 transects per site
- Measured branching structure at each transect
- In lab, measured leaf area and mass using methods from Perez-Harguindeguy et al. 2013
- Branching structure compared using Gower dissimilarity







### Environmental variables

- Soil
- Electrical conductivity
- pH
- Percent sand
- Distance to water

- Elevation above sea level
- Longitudinal slope
- Grazing intensity
- Beetle presence
- Cover of standing dead
   Tamarix (estimate of biocontrol intensity)



### Environmental variables do not explain SLA



### Our results do not match literature values





Horton et al. 2001 Nagler et al. 2009

# Branching structure also differs by site and reach



# Environmental variables partially explain branching structure

| Variable                      | Т     | p      |
|-------------------------------|-------|--------|
| Soil electrical conductivity  | -2.67 | .009 * |
| River width                   | 2.22  | .029 * |
| Percent Tamarix dead per site | 2.24  | .028 * |
| Elevation above sea level     | 1.62  | .108   |

Results of stepwise selection

$$R^2 = .17$$

## What's going on?

- SLA is predicted by temperature, light availability, and water availability
- No clear gradient in environmental variables between sites
- Within this county, there is not much spatial variation in temperature and light availability
- Genetic variation is a possible explanation

## What's going on?

- Literature values were collected at different locations from our study this suggests high interspecific variation
- Branching structure seems to be affected by these environmental variables, but the model does not explain much of the variation

#### Future directions

- Full series of traits
- Other species
- Additional abiotic variables
- More in-depth look at branching structure



## Acknowledgements





#### Funding:

 National Science Foundation CNH grant; University of Denver, Division of Natural Sciences and Mathematics, Partners In Science undergraduate research grant, NSM eSTEM fellowship, University of Rochester Intern fellowship

#### Collaborators:

- Dr. Anna Sher, Annie L. Henry, Dr. Eduardo González, W. Wright Robinson
- Research Assistance:
- Emily Palmquist, Dr. Barbara Kus
- Undergraduate field assistants:
- Kate Petty, Katie Newman, James Sheinbaum, Amy Sahud, Jack Bailey,
   Alexandra Harper, Jake Ryor

## Questions?



Alexander Goetz
alexander.goetz23@du.edu
alexgoetz.weebly.com