Frost, heatwaves and declining water tables: is there a super cottonwood genotype that can cope with all three?

Frost, heatwaves and declining water tables: is there a super cottonwood genotype that can cope with all three?

Future climate in the West...

- Is the population niche going to narrow?
- If so, can we identify genotypes within populations best suited to maximize fitness in a smaller niche?

U.S. Global Change Research Program

(Global Change Research Act of 1990, Office of the President)

Economics 101

 Supply / demand: Ex. Sapwood (supply) to leaf area (demand)

 Cost / benefit: Ex. Leaf construction (cost), photosynthetic carbon gain (benefit)

Risk / reward: Ex. Early leaf flush (Risk), photosynthetic carbon gain (benefit)

A theoretical super genotype...

- Thermal stress avoidance: Early leaf flush, high maximum conductivity, high sapwood / root area to leaf area, low stomatal control (high risk)
- Frost tolerance / avoidance: Late leaf flush, small diameter xylem vessels
- Drought tolerance / avoidance: High sapwood / root area to leaf area, high stomatal control (low risk)
- High degree of phenotypic plasticity

Fremont cottonwood populations are distributed across discrete ecoregions

The expression of traits should follow a predictable pattern as a function of climate constraints

- Foliage phenology
- Leaf traits

- Wood / hydraulic traits
- Above ground architecture

Bothwell et al. (in prep)

Common garden experiment to study trait variability

Eight populations spanning two Ecoregions and a MAT range of ~ 12 °C

Local adaptation in foliage phenology

- Budburst varied by over two months
- Bud set varied by over three weeks
- Phenology was highly correlated to the # of frost freeze days

Blasini et al., in prep

Large leaf trait contrasts between ecoregions

Leaf cooling features

Blasini et al., in prep

Small contrasts in wood / hydraulic traits between ecoregions

AZ genotypes have lower midday water potentials (WP.md), a reflection of reduced stomatal control over plant water potentials

Moderate contrasts in above ground architecture between ecoregions

Large contrasts in trait expression between ecoregions

Large contrasts in trait expression between ecoregions

Is there a super genotype

- Probably not Evidence for strong local adaptation
- However many locations may never be exposed to both late freezes and extreme thermal stress
- Target genotypes with high plasticity
- Linking trait expression to molecular markers will close knowledge gaps

Heat exposure: adaptive (heat avoidance) or non-adaptive (heat failure)?

$$E_{total} = E_{stomata_diffusion(T_{leaf}, D, A)} + E_{stomata_effusion(T_{leaf}, T_{air}, A)} + E_{cuticle(T_{leaf}, D)}$$

Fremont cottonwood populations are distributed across discrete ecoregions

Fremont cottonwood populations are distributed across discrete ecoregions

And display a high degree of local adaptation within each ecoregion

High plasticity in foliage phenology

Thermal regulation comes with inherent risk

Regional snowpack is declining

a) April 1 Observed SWE Trends 1955-2016

 Declining snowpack = reduced stream flow and groundwater recharge

