

Planning Site Restoration of
Southwestern Willow Flycatcher
Habitat with High Resolution
(1m) Flycatcher Niche Models
Incorporating Classification of
Tamarisk, Willow & Cottonwood
from Aerial Imagery

JL Tracy, RN Coulson, Texas A&M University

17th Annual RiversEdge West
Riparian Restoration Conference
5 February, 2019
Phoenix, Arizona

Flycatcher and Tamarisk Beetle Ranges- 2014

Effect of tamarisk beetle defoliation on federally endangered SW Willow Flycatcher, St. George, UT

- First year of complete defoliation -2009
 - Nest success of 13%; = 75% drop from typical 54% nest success
- Second year of complete defoliation 2010
 - Nesting sites switched to primarily willows
 - Nest success of 30%

Southwestern Willow Flycatcher Coarse Resolution (1km) MaxEnt Ecological Niche Model

(Tracy et al. in prep.)

Southwestern Willow Flycatcher MaxEnt Ecological Niche Model

Historical

(Tracy et al. in prep.) Future 2017 High CO₂

High Resolution (1 m) Random Forest Classification of Tamarisk, Willows, and Cottonwood using Random Subset Feature Selection

Tonto Creek A-Cross Site, Arizona

6 June, 2013, leaf on USDA National Agricultural Imagery Program Digital Orthophoto Quarter Quad (NAIP DOQQ)

Red Green Blue NIR

5 June, 2012, leaf on Google Imagery

Red Green Blue

7 January, 2014, leaf off Google Imagery

Red Green Blue

6 June, 2013, leaf on USDA DOQQ

5 June, 2012, leaf on Google Imagery

7 January, 2014, leaf off Google Imagery

300 Spectral Indices

- 10 Spectral Bands (e.g., Blue June 1012, BLUEJN12)
- 70 Spectral Band Texture Indices (e.g., Red Jan 2014 2nd Order Dissimilarity Texture in 17x17 window, REDJA14-2DIS17)
- 100 Single Pixel Spectral Indices (e.g., Blue Red, Green Added Band Normalized Difference Index 2012; (Blue + Red – 2Green)/(Blue + Red + 2Green); BRGANDI12)
 - 120 Single Pixel Spectral Index Texture Indices (e.g., Red Blue Normalized Difference Index 2012 2nd Order Variance Texture in 17x17 window; (Red + Blue)/(Red − Blue); RBNDI12_2VAR17)

300 Spectral Indices from Multi-spectral Multi-temporal Imagery

Random Subset Feature Selection for 500 Random Forest Classifications

Rank by Overall Accuracy
Classification
Wrapper
Criterion

Feature Subset Ensemble Top 3 of 500 High Accuracy Random Forest Classifications with 20 of 300 Features

Threshold 3 Rule-Based Modal Filter

Post Classification Accuracy Assessment with Held Out Reference Data for Final Classification

Random Forest Classification using

Random Subset Feature Selection

6 June, 2013, leaf on USDA DOQQ

Majority Vote Feature
Subset Ensemble
for Top Accuracy 3 of 500
Random Forest
Classifications
using Random Sets of
20 of 300 Spectral Indices

5 June, 2012, leaf on Google Imagery

7 January, 2014, leaf off Google Imagery

Threshold 3 Rule-Based Modal Filter (Modification of Adaptive Majority Filter by Kim (1996)

Riparian Vegetation Classification Accuracy

Confusion Matrix for Riparian Vegetation Classification

		Reference Data								
			Fremont					Good-		User's
			Cottton-	Velvet				ding's		Accu-
		Cattail	wood	Mesquite	Other	Shrub	Tamarisk	Willow	Total	racy
Classification Data	Cattail	24	0	0	1	0	0	0	25	0.96
	Fremont									
	Cottton-wood	0	27	0	2	0	0	1	30	0.90
	Velvet									
	Mesquite	0	1	28	1	1	0	0	31	0.90
	Other	0	0	0	71	0	0	0	71	1.00
	Shrub	0	1	1	7	24	0	0	33	0.73
	Tamarisk	2	2	0	1	0	27	2	34	0.79
	Goodding's									
	Willow	1	0	1	3	0	4	21	30	0.70
	Total	27	31	30	86	25	31	24	222	254
										222/
	Producer's									254=
	Accuracy	0.89	0.87	0.93	0.83	0.96	0.87	0.88	254	0.87

Overall Accuracy: 0.87

Kappa: 0.85

Overall TSS: 0.75

Classified Patches of Tamarisk/Willow/Cottonwood Riparian Woodlands

Percent Tamarisk per Riparian Woodland

Percent Willow per Riparian Woodland

Percent Cottonwood per Riparian Woodland

% Fire Canopy Removal Index versus Pre-Fire % Cover Tamarisk (Gail Drus)

% Fire Canopy Removal Index – with Beetle Defoliation

% Fire Mortality Index versus Pre-Fire Cover Tamarisk (Gail Drus)

% Fire Mortality Indices

Tamarisk Mortality

Willow Mortality

Cottonwood Mortality

% Fire Mortality Index

Area Riparian Woodland at Zero and One Years Post Fire

Area Flycatcher Habitat at Zero and One Years Post Fire

Southwestern Willow Flycatcher High Resolution (1m) Habitat Suitability Index Mode

Tonto Creek A-Cross Site, AZ

- 30 flycatcher territories in 2011; 100 random absence sites selected
- 335 ha, 3.5 km reach
- Tamarisk 10–90 % cover in woodland patches

Ground Survey of Riparian Woodland Patch Location, Composition and Height

 Tamarisk dominates 13 (43%) of 30 patches with flycatcher territories

Tamarisk in patch used by flycatchers at Tonto Creek, AZ in 2011

Refine flycatcher Habitat Suitability Index Model for Tonto Creek A-Cross Site, AZ

Five Habitat Suitability Index variables (1 m res)

- Percent cover tamarisk/ willow/cottonwood at 2–10 m height(SI1)
- Patch area (S12)
- Vegetation height (SI3)
- Distance to water (SI4)
- Nest tree defoliation (SI5) susceptibility

Flycatcher HSI calculation HSI = $SI1 \times SI5 \times \sqrt[3]{SI2x SI3x SI4}$

(Tracy et al. in prep.)

Flycatcher Habitat Suitability Index Model-Estimating Suitability Index Curve of Distance to Water

- Step 1: Assemble univariate statistics from literature field data
- Step 2: Estimate suitability variables from field data statistics
- Step 3: Fit appropriate curve to estimated suitability variables

Fitted Weibull curve:

Suitability = $1 - e^{-1*}((x+914501849.9222)/914501911.6335)**-30042543.2241$

Flycatcher Habitat Suitability Index Model-Estimating Suitability Index Curve of Distance to Water

Step 4: Calculate distance to water grid for study site (1 m res)

Flycatcher Habitat Suitability Index Model-Estimating Suitability Index Curve of Distance to Water

 Step 5: Apply suitability curve formula to distance to water grid and calculate suitability index grid SI4- distance to water

(Tracy et al. in prep.)

Flycatcher Habitat Suitability Index Model Patch-based Suitability Indices

% Cover Willow/
Cottonwood/Tamarisk
at 2–10 m Height
Index

Patch Area Index

Patch Mean Vegetation Height Index

Flycatcher Habitat Suitability Index Model Patch-based Suitability Indices

Nest Tree Defoliation
Susceptibility Index
Habitat suitable if < ≈35% nests in
tamarisk

Estimated Percent Nests in Tamarisk based on % Tamarisk vs. Willow

Flycatcher Habitat Suitability Index Model-Evaluation Area with Presence/Pseudoabscence Data

(Tracy et al. in prep.)

Flycatcher Habitat Suitability Index Model and GLM Suitability Model

Baseline suitability (Y0), Tonto Ck, AZ

HSI vs. GLM Flycatcher Suitability Model Comparison

Baseline flycatcher suitable habitat projected by HSI and GLM models for Tonto Creek A-Cross Site, AZ.

		Total Quantity	Mean Quality				
		Suitable	Suitable				
Model	Threshold	Habitat (ha)	Habitat				
HSI	≥ 0.50	19.1	0.77				
GLM	≥ 0.50	31.8	0.76				
% Dif	fference	66%	1%				
HSI	≥ 0.71*	13.2	0.82				
GLM	≥ 0.78*	19.7	0.82				
% Dif	fference	49%	0%				
*Threshold maximizing kappa.							

Flycatcher Habitat Suitability Index Model - HSI

Combine five suitability indices by weighted HSI formula to project baseline flycatcher habitat, Tonto Ck, AZ

Baseline HSI projections

- Suitable flycatcher habitat (≥ 0.5 HSI) (yellow/orange/red) projected at 19.1 ha
- Suitable habitat quality projected at 0.77 out of 1.0

Baseline Flycatcher Habitat, Tonto Creek, AZ

2011 mesoscale niche model - 30 m res. (Hatten et al. 2010)

Resident WIFL Territories - USFS 2,151' Elevation Habitat Code (Below 2151') **A-Cross Road**

Fig. 6 (Valencia 2012)

2011 microscale niche model

- 1 m res. (current study)

Flycatcher Habitat Suitability Index Model – HSI

Projected baseline flycatcher habitat, Tonto Ck, AZ

Correctly projected flycatcher occupied patch of 75% tamarisk

Correctly projected flycatcher occupied patch of 10% tamarisk 90% willow

Main assumptions for flycatcher HSI simulation models

- Tamarisk dieback due to beetles averages about 50% over a 3 yr period (based on data from Big Spring, Texas)
- Flycatchers switch nesting preference from tamarisk to willow after 1st yr defoliation
- Pole plantings of willows take three years to reach suitable heights for flycatcher nesting habitat

Year 3 simulated added artificial side channel pools and planted willow patches, Tonto Ck, AZ

Flycatcher HSI simulation model scenarios, Tonto Ck, AZ

- Year 0- baseline suitability
- Year 1- suitability with 100% beetle defoliation of tamarisk
- Year 3- suitability with beetle defoliation and 50% tamarisk dieback (including some willow regrowth)
- Year 3- suitability with beetle defoliation and dieback and 5 ha artificial willow patch creation and 8 ha pools

Year 3 simulated added artificial side channel pools and planted willow patches, Tonto Ck, AZ

Flycatcher HSI baseline (Y0) and Year 1 (Y1) simulation, Tonto Ck, AZ

- In Year 1 of beetle defoliation, 56% loss of suitable flycatcher habitat, with a loss of 2/3 of suitable patches
- Most, but not all, patches lost are dominated by tamarisk

Year 3 simulations, Tonto Creek, AZ

- By Year 3 (Y3) of defoliation, only 25% of habitat is lost (not 56% as in Y1) due to flycatchers switching preference to willow.
- In Y3 with restoration of 5 ha willows, suitable habitat can be restored 22% above baseline Y0

Projections from flycatcher HSI simulations

- Highest losses to flycatcher habitat may occur during the first year of tamarisk beetle defoliation
- Significant loss of flycatcher habitat suitability may occur in willow patches with as little as 10–25% tamarisk
- Addition of side channel pools with willow patches three years prior to arrival of beetles can potentially mitigate flycatcher habitat loss to tamarisk beetles
- Addition of pools next to existing willow stands can improve their suitability to flycatchers
- HSI simulations can guide timing, placement, and amount of pool/willow patches for habitat restoration

Acknowledgements

 Amy Ann Madara-Yagla, Forest Protection Officer, USDA Forest Service, Tonto National Forest, Tonto Basin Ranger District, Roosevelt, Arizona

Questions?

