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Bank erosion drives large wood inputs
along alluvial rivers

Introduction Methods RESES Conclusion



Channel erosion Floodplain and riparian
and migration forest development

Erosion of S
channel mature “<mature "
migration forest
Young
forest
stands
channel
migration

Introduction Methods RESES Conclusion



Forest stands shift over time Iin tree density,
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How can we model riparian forest
dynamics along alluvial rivers to
predict stand structure over time?
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Floodplain development drives many forest processes: Conservancy &2
» Tree density
» Tree size (diameter)

» Species composition changes (forest succession)

« Develop quantitative relationships and predict tree diameter
distributions for large wood (LW) inputs
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Modeling approach

 Model forest structure
development from field
Inventory data

 Predict tree density and
diameter distributions

with floodplain age -

« Account for tree species
and size shifts during
riparian forest succession
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Model structure
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Field and spatial data inputs
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EXxisting
vegetation
and
floodplain
age maps
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Sacramento riparian forest inventory
(2010 — 2012)

« 431 fixed-area plots on
19 large meander bends

» Stratified by floodplain
age; 7—104 years old

* Tree species, diameter,
basal area
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Shifting species with forest age
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Stand density changes with forest age
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Empirical diameter distributions
shifted with floodplain age
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Weibull functions
optimized with time-varying
parameters
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Predicted CDF

Predicted diameter distributions
based on Weibull functions
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Predicting fractions of large wood (>30 cm dbh)
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 Few large trees
« All pioneer species

Floodplain age: 50 years Floodplain age: 70 years Floodplain age: 90 years

* More large trees
« Greater mix of early and late
successional trees
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Conclusions and applications

 Predict riparian forest dynamics using a simple
probabilistic model

« Accounts for shifts in species composition and
Size structure over time

« Can be parameterized to other rivers using local
Inventory data

« Scenario development and guantitative targets for
wildlife habitat

« Compare river management strategies, e.g.,
removing bank revetment, environmental flows
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Thanks for your attention

Field work: J. Riddle, C. Swider, T. Hall, E. White (SUNY-ESF)
Statistical help: L. Zhang (SUNY-ESF)

Vegetation maps

* Nelson C., M. Carlson and R. Funes. 2008. Rapid Assessment Mapping in the
Sacramento River Ecological Management Zone — Colusa to Red Bluff. Sacramento
River Monitoring and Assessment Program. Geographical Information Center, California
State University, Chico.

* Viers, J.H., AK. Fremier, and R.A. Hutchinson. 2010. Predicting map error by modeling
the Sacramento River floodplain. Proceedings from the 2010 ESRI International User
Conference, San Diego, California. 21 pp.

Floodplain age map

« Greco, S.E., A.K. Fremier, E.W. Larsen, and R.E. Plant. 2007. A Tool for Tracking
Floodplain Age Land Surface Patterns on a Large Meandering River with Applications for
Ecological Planning and Restoration Design. Landscape & Urban Planning 81:354-373.
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State University of New York
College of Environmental Science and Forestry

PhD Assistantship in Arid-land Riparian Ecology and
Ecophysiology at SUNY-ESF

We are seeking a motivated graduate student with interests in riparian forest ecology,
ecophysiology, dendroecology, and statistical analysis for a project investigating drought and
its impact on riparian ecosystems in the Southwestern USA (Arizona and California). The
position is at the State University of New York College of Environmental Science and
Forestry (SUNY-ESF) in Syracuse, New York. The research project will assess the impacts of
water limitation on riparian trees using tree-ring analysis, stable isotope methods, field
surveys, and geospatial approaches. The position is part of an interdisciplinary collaboration
with University of California at Santa Barbara and University of Cardiff, and is funded by the
Strategic Environmental Research and Development Program (SERDP) of the US
Department of Defense.




