## Dolores River Restoration Partnership Rapid Monitoring

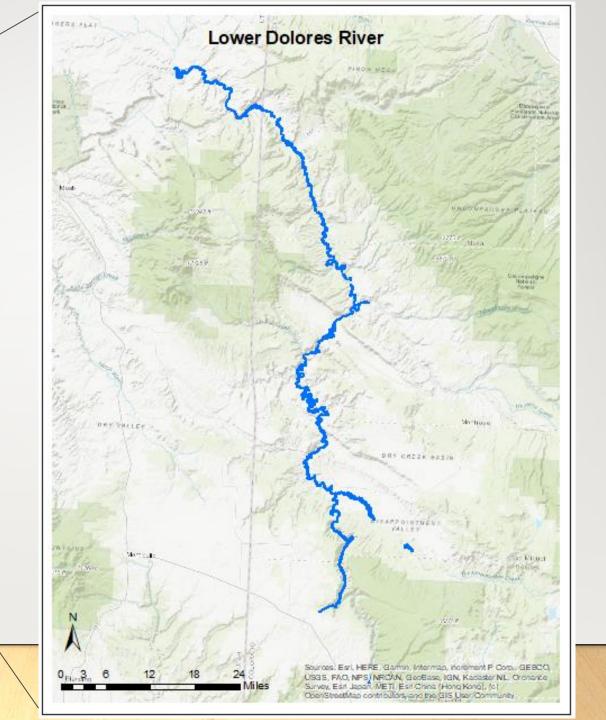
Tracking restoration progress on a site-by-site basis





#### Outline

- DRRP Background and History
- Partnership Goals
- Rapid Monitoring
  - What, Where, When
  - Data Collected
  - Methods
- How is the Data Used
- Advantages of Rapid Monitoring




# What is the Dolores River Restoration Partnership (DRRP)?

 Collaborative group of individuals and organizations working to restore native vegetation communities and overall ecological function of the Dolores River







## THREATS TO THE DOLORES RIVER

- Tamarisk
  - displaces native plants
  - increases wildfire risk
  - impairs wildlife and fish habitat and forage
  - diminishes recreation access
- Other Noxious Weeds
  - Russian knapweed, Russian olive, Siberian elm, Canada thistle, Hoary Cress

#### RESTORATION ACTIVITIES

- Tamarisk removal (includes retreatment)
- Some removal of Russian
  Olive and Siberian Elm
- Secondary weed treatments: Russian knapweed, Canada thistle, Hoary Cress, Musk thistle
- Active Revegetation
- Monitoring

## Hypothesis

If we remove 90-100% of select invasive species the native species will naturally recruit on their own





## Partnership Ecological Goals

- Less than 5% relative tamarisk cover
- Less than 15% relative non-native invasive cover
  - → Greater than 75% relative native vegetation cover
- Greater than 30% total vegetation cover
- Evidence of native species passive recruitment

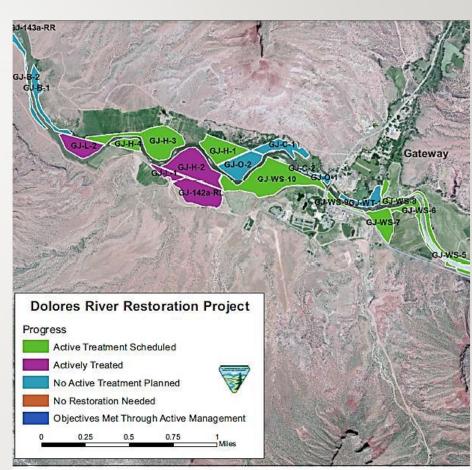


## **Key Questions**

- Where do we need to put management resources?
- Where are we meeting restoration goals at a landscape scale?



## What is DRRP Rapid Monitoring?


- Vegetation monitoring
- General idea of vegetation response to restoration activities on and throughout EVERY SITE
- Designed to cover a lot of acreage in a reasonable amount of time

Where and When is Rapid Monitoring

Performed?

Reporting Polygons = "Sites"

- Rapid Monitoring conducted on
  - Actively Treated
  - Active Treatment Scheduled
  - Some Objectives Met sites
- Monitor roughly 1/3 of sites every year → Monitor on 3 year cycle
- 8 weeks in the summer



## Rapid Monitoring - Key Data Collected

- Relative Cover Ocular Estimates
  - Cover Classes: 0%, 1-5%, 6-10%, 11-20%,..., 81-90%, 91-95%, 96-100%
  - Native species, tamarisk, most abundant invasive species
- Tamarisk Leaf Beetle Presence
- Passive Recruitment
- Invasive Species Inventory
- Photo-Points

#### Data Collection Method

- Crew of 2 people
- Thorough site walk-through
  - Eyes on entire site
  - Consensus for cover class of tamarisk, native species, etc.
- Arc Collector on tablets → Monitors sync data to Arc Online from downloaded offline maps



#### Passive Recruitment

- Focus on willows and cottonwoods
- Evidence of Natural Recruitment
  - ≥ 20 cottonwoods greater than 1 meter in height and between 1 and 10 years of age

And/or

• ≥ 100 willow stems that are at least 0.5 meters in height



### Photo Points

• At least 3 photos per site





## **Invasive Species Inventory**

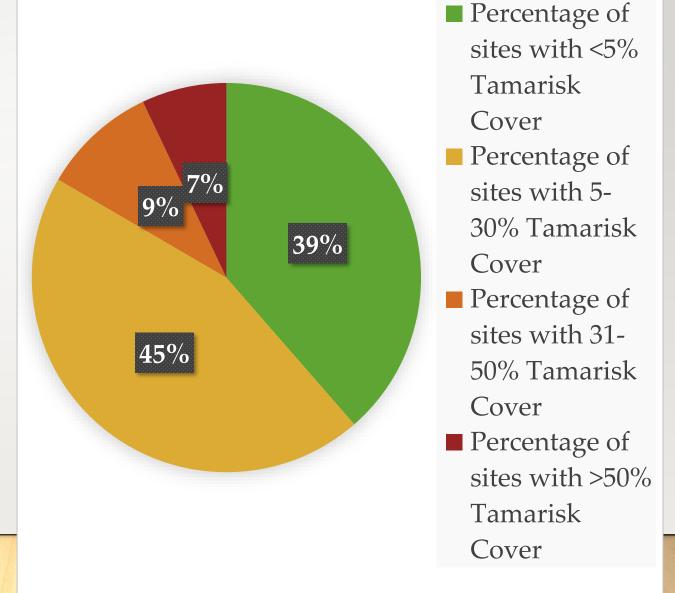
- Create a polygon for each secondary weed infestation within each site
- Tamarisk cover is estimated for every polygon

| Canada Thistle           |
|--------------------------|
| Musk Thistle             |
| Russian Knapweed         |
| Hoary Cress              |
| Yellow Starthistle       |
| Phragmites (Common Reed) |
| Russian Olive            |
| Siberian Elm             |
| Perennial Pepperweed     |
| Purple Loosestrife       |

## How is Rapid Monitoring Data Used?

- Informs management decisions on a site-by-site basis
  - Prioritize sites for secondary weed treatments
  - Track where tamarisk is re-sprouting and establishing
  - Do we need active revegetation?
  - Adaptive management




## How is Rapid Monitoring Data Used?

- Project planning type of treatment needed, how long treatments might take, supplies needed
- Rapid-detection/early response for weeds like purple loosestrife and yellow starthistle
- Track which sites are meeting restoration goals
- Able to see how restoration is progressing over 200 miles of river

## Restoration Progress

- 79% of sites have
  Tamarisk leaf beetle
  presence
- 69% of sites have > 50%
  native vegetation cover
- 93% of sites infested by Russian knapweed

#### % Tamarisk Cover



## Advantages of Rapid Monitoring

- Eyes on every single restoration site on a 3-year basis
  - 241 total sites encompassing over 2,600 acres
- Efficient with time and cost
  - Can monitor 1/3 of the watershed in 8 weeks with 2 people
  - Minimal tools and software
- Engage conservation corps
  - Help educate and engage the next generation of stewards!

