## Ultra-High Resolution Remote Sensing for Species Identification and Restoration Monitoring

## Monitoring Mule Deer Habitat Restoration







Geospatial Ecologist Grand Junction, CO, USA; alicia.langton@gmail.com



#### **Richard Alward**

Senior Ecologist Grand Junction, CO, USA; ralward@aridlands-nrc.com



#### Tamera Minnick

Professor
Grand Junction, CO, USA;
tminnick@coloradomesa.edu



#### **Danielle Johnston**

Habitat Researcher Grand Junction, CO, USA; danielle.bilyeu@state.co.us

# Colorado Mule Deer Declines & Habitat Restoration

**Northwestern CO** 





- Long-term monitoring is critical!
- Some challenges limiting monitoring implementation
  - Technical (poor design, site access, property rights)
  - Institutional (financial)
- · Remote sensing can be...
  - Time and cost efficient
  - Collect data on rugged terrain and on land w/o access

Can we use remote sensing to monitor restoration?



Are remote sensing methods equal to ground surveys?



Are remote sensing methods equal to ground surveys?

Compare **cover** estimates for:

1. Functional groups

Tree Shrub Herbaceous Litter Bare



Are remote sensing methods equal to ground surveys?

Compare **cover** estimates for:

1. Functional groups

Tree Shrub Herbaceous Litter Bare

2. Key Shrub Species

Serviceberry Snowberry

Sagebrush Antelope bitterbrush
Rubber rabbitbrush Yellow rabbitbrush
Mountain Mahogany

## 1. Monitoring On-the-Ground



#### Line-point-intercept to estimate canopy cover



28 plots (~.07ha)

13 transects/plot

300 LPI hits/plot

- Time & labor intensive
- Small sample of plot

### 2. Monitoring In-the-Air





Altitude of 80 m =
"Ultra-high" resolution
~5.5 cm / pixel
4 million pixels per hectare





#### **Multi-spectral camera**

• 5 bands (**B**, **G**, **R**, **RE**, **NIR**)

- Time efficient
- Sample all of plot

## 3. Identify Plant Species with LPI data



#### LPI to Shapefile





Compass led transects

#### Ground-truth digitization



## 4. Monitoring On-the-Computer





**OBIA** can use

Spectral statistics

Shape

Size

Texture

Relations to...

...neighbor objects

...super-objects

...sub-objects

etc...

#### **Object-Based Image Analysis**

(Image segmentation)



(Classify Objects)

Ruleset

<sup>\*</sup>Automated classification for all your sites

#### Monitoring Methods: Ruleset Creation





## Object Classification: Functional Groups



Tree Shrub

Herb Bare

Litter Slash Shadow

# Excellent estimation of shrub cover





### Object Classification: Functional Groups



Tree Shrub

Herb Bare

Litter Slash Shadow

# Not so great estimation of other cover





## Object Classification: Functional Groups



# Not so great estimation of other cover



- Small shrubs => herbs.
- August: Senescent herbs.
- Bare and litter spatial res << 5.5cm resolution.</li>

## Object Classification: Species



Serviceberry

Artemisia sp. Herbaceous Litter/Bare

Snowberry

Slash

#### Accurate Estimation of Key Shrub Species





## Object Classification: Species



#### Accurate Estimation of Key Shrub Species



Misclassification in mixed sites with mountain mahogany

## Object Classification: Species



#### Other shrubs not well-classified



- Need more ground-truthing
  - GPS species in plots
- Ruleset modifications









#### In summary,

 Ultra high-resolution drone-collected data facilitates cost-effective long-term monitoring



#### In summary,

 Ultra high-resolution drone-collected data facilitates cost-effective long-term monitoring

#### 1. Time Efficient





28d in Field

+ Stats





#### In summary,

 Ultra high-resolution drone-collected data facilitates cost-effective long-term monitoring

#### 1. Time Efficient

3d in Field + Analysis



28d in Field + Stats



#### 2. Comparable Cover Estimates





#### In summary,

 Ultra high-resolution drone-collected data facilitates cost-effective long-term monitoring

#### 3. Need Better Ground-Truthing!











And more!

# Ultra-High Resolution Remote Sensing for Species Identification and Restoration Monitoring

#### Can we use remote sensing to monitor restoration?

#### Yes!

- Efficient and can collect more data
- Provides tools to ask (and answer) new questions about:
  - Plant spatial and temporal distribution and change detection
  - Horizontal and vertical structure (photogrammetry or lidar)
  - Physiological status of key species
- Permanent record of vegetation cover
  - Better analytical technologies every year...

# Ultra-High Resolution Remote Sensing for Species Identification and Restoration Monitoring

#### Can we use remote sensing to monitor restoration?

But must include...

#### Yes!

Periodic ground-surveys!

- Increases accuracy of remote sensing
- Record data not quantifiable by your remote sensing protocols
  - Eg. New weed invasions





## Thank you!

Questions?







Geospatial Ecologist Grand Junction, CO, USA; alicia.langton@gmail.com



#### **Richard Alward**

Senior Ecologist
Grand Junction, CO, USA;
ralward@aridlands-nrc.com



#### **Tamera Minnick**

Professor
Grand Junction, CO, USA;
tminnick@coloradomesa.edu



**Danielle Johnston** 

Habitat Researcher Grand Junction, CO, USA; danielle.bilyeu@state.co.us