Photogrammetry techniques to investigate river processes and vegetation management methods.

Luke Javernick, River Sceince Walter Bertoldi, UNITN

Introduction

Flow regulation and water abstraction

- reduces river dynamics,
 - increases vegetation encroachment,
 - and alters habitat

Flood events can

- reconnect floodplain dynamics,
 - regulate invasive vegetation,
 - and recreate habitat.

Experiments

- Quantify how rivers control vegetation through morphological process
 - Can this be manipulated?
- Experiments at University of Trento
 - Flume: 24 x 1.6 m
 - Braided river: 1% slope, sediment D₅₀ 1 mm
 - Vegetation: Arugula (*Eruca sativa*) 1.1 cm tall.
 - Flow rates: low, medium, high

Challenges

- Quantify subtle morphologic changes (millimeter accuracy and resolution)
- Bed elevation bathymetry
- Fast data acquisition (highly mobile bed)
- Repeat surveys, low cost

- Photogrammetry Structure-from-Motion (SfM)
 - Millimeter accuracy
 - Total station & redundant survey
 - Bed elevation bathymetry
 - Refraction correction

- Photogrammetry **Structure-from-Motion (SfM)**
 - Fast data acquisition (highly mobile bed)
 - Coded targets & Track system
 - Repeat surveys, low cost
 - Yes!

- Quantify vegetation and morphology changes
 - Produced DEMs: z errors 2 mm
 - Orthoimagery: 0.5 mm resolution

Javernick L, Brasington J, Caruso B. 2014. Modelling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology213(0):166–182.DOI:10.1016/j.geomorph.2014.01.006

- Mapping vegetation removal
 - Manually mapped

- Morphological changes
 - Geomorphic Change Detection Toolset (version 6.1.14)

- Channel manipulation
 - Subtle and single channels

- Channel manipulation
 - Aggressive and multiple channels

- Manipulation classification (natural and manipulated):
 - A: Major adjustments: main channel shift
 - B: Minor adjustments: anabranch shift or redistribution
 - **C:** No adjustments

Results

- Number of experiments
 - Sample size: 135 (45 each Q)
 - No manipulation: 64
 - Minor manipulation: 50
 - Major manipulation: 21

Vegetation removal

- Low Q:
 - Major is significantly greater.

Vegetation removal

- Low Q:
 - Major is significantly greater.
- Medium Q:
 - Steady increase

Vegetation removal

- Low Q:
 - Major is significantly greater.
- Medium Q:
 - Minor & Major Comparable
- High Q:
 - Minor & Major greater
 - Major dataset has small sample (3)
- All Datasets vegetation removal:
 - Low Q with major avulsion is greater than larger floods with and without avulsion

Morp. Volume Changes

- Low Q:
 - Steady increases in changes

Morp. Volume Changes

- Low Q:
 - Steady increase in changes
- Med Q:
 - Major shows a significant increase

Morp. Volume Changes

- Low Q:
 - Steady increase in changes
- Med Q:
 - Major shows a significant increase
- High Q:
 - Minor and Major comparable
- All Datasets:
 - > Q = > volume difference
- Low Q, with major avulsion
 - Comparable to higher Q's without avulsion.

19

Conclusion

Remote sensing techniques

- SfM provided fast, accurate, and low-cost data.
 - Able to quantify and monitor vegetation and morphological changes

Vegetation management

- Vegetation dynamics are highly variable and depends on local morphological changes and bank erosion.
- Small floods with manipulation had similar vegetation removal and morphologic changes as large floods without manipulation.

Questions?

Luke@River.Science Walter.Bertoldi@unitn.it

References:

Bertoldi, W. (2012). Life of a bifurcation in a gravel-bed braided river. Earth Surface Processes and Landforms, 37(12), 1327–1336. doi:10.1002/esp.3279

Javernick L, Brasington J, Caruso B. 2014. Modelling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology213(0):166–182.DOI:10.1016/j.geomorph.2014.01.006

Kleinhans, M.G., Ferguson, R.I., Lane, S.N., & Hardy, R.J. (2013). Splitting rivers at their seams: Bifurcations and avulsion. Earth Surface Processes and Landforms, 38(1), 47–61. doi:10.1002/esp.3268

