

SWFL fecundity in decline, linked to defoliation & nest temperatures

Figure 4-5.—Mean annual fecundity (young produced per female southwestern willow flycatcher) at Key Pittman (KEPI), River Ranch (RIRA), Pahranagat (PAHR), and Meadow Valley Wash (MVWA), 2003–17.

Mixed, tamarisk & dead tam sites warmer & drier – restoring native veg even more important

Temperature: F=273.9, p<0.00001

Relative Humidity: F=590.2, p<0.00001

Mycorrhizal fungi

Ecto-mycorrhizal fungi (EMF)

Arbuscular mycorrhizal fungi (AMF)

- Ancient symbioses (450+ mya)
- ~85% land plants
- 2 types main: EMF & AMF
 - Cottonwoods & willows partner with both
- Specialized exchange structures = symbionts
- Receive plant photosynthate in return for resources

Vast networks share resources warning signals

Mycorrhizal effects on plants

Data from Ag, growing body in ecology

- Boost survival/growth
- Pest control
- Water/drought survival
- continued...

Not negligible impacts: ~25-50%+

Invasive vegetation reduces mycorrhizas

- Spotted knapweed (Mummey & Rillig 2006)
- Garlic mustard (Stinson et al. 2006)
- Canada goldenrod (Zhang et al. 2010)
- Italian thistle (Vogelsang & Bever 2009)

Spotted Knapweed
Centaurea maculosa

Garlic Mustard

Alliaria petiolata

Italian thistle
Carduus pycnocephalus

Riparian-specific field data: Pulliam-Babbitt / SEGA common garden

Tam legacy reduces cottonwood survival

Bars represent total survival proportions in study, thus no error bars are provided.

Inoculation can help counteract

Bars represent total survival proportions in study, thus no error bars are provided.

And increase above-ground biomass/plant

Error bars = 2 SE.

Research questions

- 1) Will inoculation boost SWFL habitat suitability?
- 2) Can fine-scale SWFL habitat models discriminate between specific restoration decisions at a site?

Hypotheses

- 1) <u>Appropriate</u> mycorrhizal inoculations can improve SWFL habitat suitability in tamarisk restoration.
- 2) <u>Appropriate</u> mycorrhizal inoculations can decrease the time to achieve suitable SWFL habitat.
- 3) Fine-scale models can discriminate between SWFL outcomes based on key restoration decisions -> to evaluate the importance of specific decisions compared to their cost, ahead of action in the field.

Original fine-scale GIS SWFL Habitat Suitability Index (HSI) model

- 1 m resolution
- Tracy *et al*. 2016

Classify & field verify existing vegetation

Calculate distance to water

Original HSI model-building steps

- Pull info on habitat suitability from field studies
- Identify factors
- Estimate their relative contributions

Relationship between each variable value & habitat

suitability

Calculated total Habitat Suitability Index (HSI)

- Percent cover (SI1)
 - tamarisk
 - willow
 - cottonwood
- Vegetation height (S13)
- Patch area (SI2)
- Distance to water (S14)
- Tree defoliation (SI5) susceptibility (based on % nests in tamarisk)

Flycatcher HSI calculation

$$HSI = SI1 \times SI5 \times \sqrt[3]{SI2 \times SI3 \times SI4}$$

Test model predictions verses SWFL field data

Correctly predicted SWFL nesting

Hypotheses

- 1) <u>Appropriate</u> mycorrhizal inoculations can improve SWFL habitat suitability in tamarisk restoration.
- 2) <u>Appropriate</u> mycorrhizal inoculations can decrease the time to achieve suitable SWFL habitat.
- 3) Fine-scale models can discriminate between SWFL outcomes based on key restoration decisions -> to evaluate the importance of specific decisions compared to their cost, ahead of action in the field.

Added to Original Fine-Scale GIS Model

*Current results demo minor work over 2 months.

More to come!

We hope you'll ask for what is needed to support restoration projects!

Selected restoration patches near water

- 1) Plant installation & SWFL preferences.
- 2) 2011 water lines used for demo.
- 3) Future scenarios: sites identified for restoration & hydrological predictions.

Identified plant palette, planting type & plant spacing

Riparian restoration plantings of 2' deep pots at 3-meter spacings for Tonto Creek A-Cross site, AZ.

Species	Number Plantings	Percent Total
Goodding's Willow	8,952	98.9%
Fremont Cottonwood	100	1.1%
Total	9,052	100%

- 3 m apart
- 2' potted plantings

Added survival & growth by species & planting type

Reference	Location	Plant Spp.	Planting Type	Spacing	Duration	Survival
Laub et al. 2019	San Rafael River, Utah, U.S.A.	Fremont cottonwood	2-m-tall trees in 3.8 L pots	no info	1.25 years	35%
Amanda Clements, 2008 - 2010, Presentation	Western CO, Gunnison River	Cottonwood	poles	no info	1 growing season	0%
Amanda Clements, 2008 - 2010, Presentation	Western CO, Gunnison River	Cottonwood	poles	no info	1 growing season	12% yr 1, 0-6% yr 2
McMaster and Chaudhry 2017	Grand Canyon National Park, Colorado River	Salix gooddingii (Gooding's willow)	poles	no info	10 months	40%

Added responses to appropriate mycorrhizal inoculation for each plant species

Reference	Effect	Percent Change	Direction	Time Interval	Context
					Greenhouse

33%

75%

100%

27%

+

Field, biomass

results from

Greenhouse

Greenhouse

Greenhouse

Field

Field

1 growing

season (7

mo)

4 months

1 growing

season

Cottonwood

biomass

Tamarisk

biomass

Cottonwood

biomass

15% to 19%

Meinhardt & Gehring

2012

Beauchamp et al. 2005

Gehring et al. 2014

Gehring et al. 2006

Markovchick et al. in

prep - Pulliam Year 1

Inoculation increases canopy cover, and faster

Inoculation + restoration creates habitat with 50% suitability or higher within 6 yrs, despite defoliation

Discussion

1) What is "appropriate" mycorrhizal inoculation?

Please do not use commercial inoculum Neutral to negative effects occur with poor match between plants, soil & mycorrhizas

Maltz & Treseder, 2015

"...Importance of routinely considering the origin of plant, soil, and fungal components."

Rua et al. 2016

Other factors can affect inoculation outcomes

- Water availability
- Timing of inoculation
- Tamarisk status
- Other management actions that impact mycorrhizas (e.g. pesticides, fuel management...)

THURSDAY, FEBRUARY 6, 2020

OPTION 3

WORKSHOP | USING MYCORRHIZAL FUNGI IN RESTORATION PROJECTS OF THE SOUTHWESTERN U.S. WITH NORTHERN ARIZONA UNIVERSITY

8:00 AM ~ 12:00 PM \$20, TRANSPORTATION PROVIDED MEET IN THE WEST BALLROOM AT 8 AM

Nest Steps

 Refine model specifics (e.g. each planting type modeled for comparisons).

- 2) Add sites under consideration for restoration.
- 3) Incorporate manager scenarios, to address key decisions.
- 4) Use model to weight SWFL outcomes vs. cost.

Identified Appropriate Mycorrhizal Inoculation Rate Increases: Willows

Reference	Effect	Percent Change	Direction	Time Interval	Context
Nara and Hogetsu 2004	Survival from 63% to 100%	60%	+	1 growing season	Field
Nara and Hogetsu 2004	Dry biomass 9.3 g to 25.5 g	174%	+	1 growing season	Field
Baum et al. 2006	109 g to 120 g, or 68 g to 93 g (stem + leaf dry weight)	10% or 68%, depending on soil/ inoculant	+	6 months	Greenhouse
Nara 2005	Mean survival 8/15 to 13, 14 or 15/15.	62% to 88%	+	4-5 months	GH / growth chamber
Nara 2005	Mean shoot dry weight 0.56 g -1.3 to ~2.49 g.	132% to 344%	+	4-5 months	Greenhouse / growth chamber
van der Heijden and Kuyper 2001	2.78 g to 2.88 up to 3.97 g depending on inoculant	3% to 42%	+	6.5 months	Greenhouse / growth chamber
van der Heijden 2001	Mean shoot dry weight 88.5 mg to 292-295, depending on inoculant.	229%	+	7.5 months	Greenhouse / growth chamber

Pesticides & Other Management Can Reduce

Glyphosate

Undisturbed

Pile burn

Owen *et al*. 2013

Tamarisk neighbors reduce mycorrhizal colonization

Meinhardt & Gehring, Ecological Applications, 2012

...AND reduce cottonwood shoot biomass

Mycorrhizal treatment