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Object-Based Image Analysis (OBIA): uses spectral, 
textural, and spatial elements to classify an image

Russian olive is easily distinguished in aerial imagery 
due to silvery-green canopy. 

NAIP: 1-meter, 4-band imagery used to classify Russian 
olive in a study area on the Animas River, with a user’s 
accuracy of 91.3 percent

Methodology and parameters may be used in future 
efforts for mapping Russian olive on a regional scale.



Background



Distribution Patterns
Landscaping Windrow Riparian



Mitigation and 
Monitoring

• Mountain Studies 
Institute (MSI) has state 
funding to remove RO
• Quantitative, 
comprehensive 
documentation of RO 
distribution does not 
exist in the Animas Valley
• No means of evaluating 
mitigation efforts
• Photo: MSI



Mitigation and 
Monitoring

• MSI has used Feature 
Analyst to classify RO 
with 3-band (visible 
spectrum) aerial 
imagery

• Class confusion with 
sidewalks, roofs
• Source: Giggy, Kuenzi, and Roberts 
(2018)

User-
defined RO

Modeled 
RO



Multispectral 
Imagery

• Collected across 
several spectral ranges 
in several bands

• NIR is a portion of the 
EM (700 to 1,400 nm) 
just beyond the visible 
light spectrum
• Source: Western Reserve Public 
Media 2009

https://westernreservepublicmedia.org/ubiscience/electromagnetic.htm


Multispectral 
Imagery

• Vegetation strongly 
reflects in the NIR 
spectrum

• Different plants have 
different spectral 
signatures
• Source: GrindGIS 2017

https://westernreservepublicmedia.org/ubiscience/electromagnetic.htm.


OBIA Workflow



Study Area



Valley Bottom 
Delineation

• Confines analysis to riparian zones

• Approximated using topographic 
position index (TPI) tool (Jenness, et al 
2013)

• TPI = difference between a cell 
elevation value and the average 
elevation of the neighborhood 
around that cell

• Combined with slope, classifies 
DEM into ridge, valley bottom, slope

http://www.jennessent.com/downloads/Land_Facet_Tools.pdf


Valley Bottom 
Delineation

• Clipped to Animas Subbasin and 
elevation < 8,000 feet (upper end of 
RO habitat)



Digitized RO 
Points

• Digitized 500+ sample points of RO 
trees for Animas Valley south of 
Durango



Digitized RO Points

La Plata County 9” (2017) NAIP 1-meter (September 2017)



Defining the 
Study Area

• I selected the two PLSS Sections 
with the highest number of RO 
samples



Defining the 
Study Area

• Clipped those two sections to 
valley bottom on east and La Posta 
Road on west



Defining the 
Study Area

• Area ≈ 1 sq km



Data and Methods



ArcGIS Pro 2.3.2

Harris Geospatial ENVI 5.5

Land Facet 
Corridor Designer



NAIP Imagery

• Multispectral 

• Free 

• Flown every two years = Repeatable

• “High” resolution 1-meter

• Previous studies have used it to 
successfully classify RO with OBIA
(Hamilton et al. 2006; X. Li and Shao 2014; Tobalske and Vance 
2017)



Masking: NDVI

• Masking eliminates areas of non-
interest from analysis to speed up 
and simplify classification

• Normalized Difference Vegetation 
Index (NDVI) distinguishes between 
vegetation and non-veg.

• NDVI = (NIR – Red) / (NIR + Red)



Masking: NDVI

• NDVI RO values ranged from 
0.1 to 0.6.

• NDVI reclassified into binary 
raster:

• Non-veg < 0.1

• Veg ≥ 0.1

• Some rooftops were still 
unmasked



Masking: NDVI + Structures Layer

NAIP: Final mask:



Ancillary Data: 
LiDAR

• Ancillary data like LiDAR increases 
classification accuracy in most cases

• I created a Height Band by 
subtracting the DEM from the DSM



Training and 
Testing Samples

• Training points used to train the 
classification

• Testing points used to see how 
well the classification did

• Classes = Grass, Ground Cover 
(Shrubs), Russian Olive, Tree

• Generate 800 random points 
within the non-masked area, each 
assigned to a class



Segmentation

• Partitions the image into 
regions of similar spectral 
intensities

• Each segment is assigned 
the mean spectral value of 
the pixels within that 
segment



Segmentation

Output is a 9-band raster with the following bands: 

1. NAIP Red Band

2. NAIP Green Band

3. NAIP Blue Band

4. NAIP NIR Band

5. Height

6. NDVI

7. Hue

8. Saturation

9. Intensity



Segmentation

NAIP: Segmented version (RGB values):



Attributes

• ENVI calculates 22 spatial, spectral, and textural attributes for each 
band in the segmentation raster and uses them to classify each 
segment



Classification Algorithms

• Two commonly used algorithms were compared:

• K Nearest Neighbors (KNN)

• Support Vector Machine (SVM)

• There are many, many others

• KNN was ultimately used to derive results.



K Nearest 
Neighbor

• Measures Euclidean distance 
from each unknown segment to 
each training segment
• Source: Harris Geospatial Solutions 2019

https://www.harrisgeospatial.com/docs/BackgroundKNN.html


K Nearest 
Neighbor

• Segments are assigned the most 
common class of the k number of 
training samples that are nearest 
to it

• The higher the k value, the 
greater the generalization

• This study used a k value of 3
• Source: Harris Geospatial Solutions 2019

https://www.harrisgeospatial.com/docs/BackgroundKNN.html


Results & Validation



• 4,031 sq meters of mapped 
Russian olive

• In ENVI, I manually edited the 
KNN classification result to 
exclude segments that were 
misclassified or too small to 
determine if they were RO

Results



KNN Results



Validation: Confusion Matrix

• Compares the relationship between test samples with the 
classification results

• Reports different metrics of accuracy: Overall, Producer’s, User’s
Accuracy and Kappa Coefficient



User’s 
Accuracy

Class Grass Ground Cover Russian Olive Tree Total

Unclassified 2 47 36 148 233

Grass 58 0 0 1 59

Ground Cover 0 5 1 0 6

Russian Olive 0 2 63 4 69

Tree 0 0 0 12 12

Total 60 54 100 165 379

Class

Grass

Ground Cover

Russian Olive

Tree

Class

Grass

Ground Cover

Russian Olive

Tree 7.27 100.00

Overall Accuracy (%) Kappa Coefficient

36.41 0.30

96.67 98.31

9.26 83.33

63.00 91.30

8.70 37.00

0.00 92.73

Producer's Accuracy (%) User's Accuracy (%)

Commission Error (%) Omission Error (%)

1.69 3.33

16.67 90.74

Confusion Matrix (Count)
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• the number of correctly classified 
objects divided by the total number 
of objects that were classified in that 
class

• 91.30% of the areas identified as 
RO truly represent RO on the ground

• Represents a measure of 
commission: the likelihood of 
someone going to an area on the 
ground that has been classified as 
RO, and actually finding a Russian 
olive tree at that spot in the field



Producer’s 
Accuracy

Class Grass Ground Cover Russian Olive Tree Total

Unclassified 2 47 36 148 233

Grass 58 0 0 1 59

Ground Cover 0 5 1 0 6

Russian Olive 0 2 63 4 69

Tree 0 0 0 12 12

Total 60 54 100 165 379

Class

Grass

Ground Cover

Russian Olive

Tree

Class

Grass

Ground Cover

Russian Olive

Tree 7.27 100.00

Overall Accuracy (%) Kappa Coefficient

36.41 0.30

96.67 98.31

9.26 83.33

63.00 91.30

8.70 37.00

0.00 92.73

Producer's Accuracy (%) User's Accuracy (%)

Commission Error (%) Omission Error (%)

1.69 3.33

16.67 90.74

Confusion Matrix (Count)
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• number of correctly classified 
objects in a class divided by the 
number of reference samples used 
for that class 

• 63.00% of RO reference data 
samples were correctly identified as 
RO

• Represents a measure of omission: 
if I am standing at a RO in the field, 
what is the probability that the 
classification will correctly identify 
that object as RO 



Overall 
Accuracy

• calculated by dividing the number 
of correctly classified objects by the 
total number of reference objects

• Overall: 36.41%

• Yikes…or not?

Class Grass Ground Cover Russian Olive Tree Total

Unclassified 2 47 36 148 233

Grass 58 0 0 1 59

Ground Cover 0 5 1 0 6

Russian Olive 0 2 63 4 69

Tree 0 0 0 12 12

Total 60 54 100 165 379

Class

Grass

Ground Cover

Russian Olive

Tree

Class

Grass

Ground Cover

Russian Olive

Tree 7.27 100.00

Overall Accuracy (%) Kappa Coefficient

36.41 0.30

96.67 98.31

9.26 83.33

63.00 91.30

8.70 37.00

0.00 92.73

Producer's Accuracy (%) User's Accuracy (%)

Commission Error (%) Omission Error (%)

1.69 3.33

16.67 90.74

Confusion Matrix (Count)
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Kappa 
Coefficient

Class Grass Ground Cover Russian Olive Tree Total

Unclassified 2 47 36 148 233

Grass 58 0 0 1 59

Ground Cover 0 5 1 0 6

Russian Olive 0 2 63 4 69

Tree 0 0 0 12 12

Total 60 54 100 165 379

Class

Grass

Ground Cover

Russian Olive

Tree

Class

Grass

Ground Cover

Russian Olive

Tree 7.27 100.00

Overall Accuracy (%) Kappa Coefficient

36.41 0.30

96.67 98.31

9.26 83.33

63.00 91.30

8.70 37.00

0.00 92.73

Producer's Accuracy (%) User's Accuracy (%)

Commission Error (%) Omission Error (%)

1.69 3.33

16.67 90.74

Confusion Matrix (Count)
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• measure of the difference 
between actual and chance 
agreement between reference data 
and classified data

• Kappa: 0.30

• These results are 30% better than 
one resulting from chance



Discussion



The case against Overall Accuracy

• The most important quality of this classification is whether RO is 
there or not

• Accuracy of other classes is not that important

• Very low OA and Kappa would be unacceptable in a general land 
cover classification, but in this case they matter little 

• This argument has been made by others in the classification of rare 
classes (Maxwell, Warner, and Fang 2018).



KNN

• Results could be 
changed/improved by 
altering user-defined 
parameters

• For this study, KNN was 
used due to ease of post-
classification editing and 
higher User’s accuracy

Omission

Commission



Samples

• Classification dependent on quality and quantity of training samples

• Confusion matrix compares results to reference data (testing samples)

• All samples were identified from visual inspection of aerial imagery, 
and some could be wrong!

• Accuracy of other classes could also be improved by separating into 
subclasses (i.e coniferous and deciduous)



Other observations

• ¾ of segments removed through 
manual editing were < 17 m². 
Classification confidence 
increases with object size.

• Most RO located within 14 
meters of river. Mask areas from 
analysis not adjacent to water 
sources (might exclude other 
distribution types).



Conclusions & Future Work



Conclusions

• 63.00% probability that the location of a Russian olive tree will be 
correctly predicted

• 91.30% probability that each object classified as Russian olive actually 
represents a Russian olive tree in reality

• Probability increases with object size



• Use lessons learned to create 
distribution map of RO in the 
Animas Subbasin

• This is the ultimate goal of this 
pilot project!

Future Work: Regional Distribution



2011 2017

Future Work: Change over time



Future Work: Distinguish from Native 
Silverleaf Buffaloberry

Russian olive 

(Elaeagnus angustifolia):

Silverleaf Buffaloberry

(Sheperdia argentea)

Opposite leaf pairs

Alternate leaf pairs



Story Map
bit.do/russianolive

Thank you!

Anna Riling
annariling@gmail.com
(970) 903-8575
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