

NORTHERN ARIZONA UNIVERSITY

Remote sensing of tamarisk beetle (*Diorhabda carinulata*) impacts along the Colorado River in Grand Canyon National Park and Glen Canyon National Recreation Area

Temuulen "Teki" Sankey¹, Ashton Bedford¹, Joel B. Sankey², Barbara E. Ralston³, Laura Durning^{1,2}, and Nathaniel Bransky¹

¹School of Informatics, Computing, and Cyber Systems, Northern Arizona University

² Grand Canyon Monitoring and Research Center, Southwest Biological Science Center, U.S. Geological Survey, Flagstaff, AZ USA

³Office of Science Quality and Integrity, U.S. Geological Survey, Flagstaff, AZ USA

Tamarisk and Tamarisk Beetle (Diorhabda carinulata)

- Tamarisk in the US since 1800s
- Beetle introduced in 2001
 - CO, UT, WY, NV, CA, TX
- Arrived in Colorado River, AZ in 2009
- Larvae and beetle life states prey on tamarisk leaves
- Repeated defoliation events can weaken or kill tamarisk

Impacts from beetle

- Recreational experience
- Hydrological processes
- Carbon nutrient cycling
- Change in vegetation community and structure
 - Unclear if native vegetation will regenerate naturally?
- Risk to birds, such as endangered willow flycatcher from habitat loss?

Remote Sensing of Beetle Impacts

- Operates on a large scale and remote areas
- Allows detection of beetle effects on tamarisk
 - Pre-beetle image, 2009
 - Post-beetle image, 2013
- Both 2D spectral and 3D lidar data can be used

Study Objectives

- 1) Airborne multispectral remote sensing analysis
 - 2009 Pre-beetle imagery
 - 2013 Post-beetle imagery
- 2) Airborned lidar data analysis
 - Aboveground biomass estimates
 - Leaf biomass estimates
- 3) Satellite remote sensing analysis

Objective 1: Imagery

- Airborne imagery provided by USGS Grand Canyon Monitoring & Research Center
- 20 cm spatial resolution
- Four bands:
 - blue (0.46 µm)
 - green (0.56 µm)
 - red (0.63 µm)
 - near-infrared (NIR) (0.86 μm)
- May 2009: Pre-beetle image
- May 2013: Post-beetle image

Objective 1: Kanab Creek – 232 km downstream of Lees Ferry in Grand Canyon

2009 2013

Objective 1: Paria Beach – at Lees Ferry in Grand Canyon

Objective 1: Multispectral image analysis

- Map areas of green and defoliated tamarisk
 - 2009 tamarisk cover
 - 2013 tamarisk cover
- Change detection of pre- and post-beetle multispectral imagery

Bedford, A. "Remote Sensing of Tamarisk (Tamarix spp.) defoliation by the Tamarisk Leaf Beetle (Diorhabda carinulata) along the Colorado River in Arizona " M.S. Thesis. Northern Arizona University, May 2016

Objective 1 - Study Area: 412 km of Colorado River

Objective 1 - Methods

- Mahalanobis Distance classification
- Change detection (2009 to 2013)
- Normalized Difference Vegetation Index (NDVI)

Objective 1 - Results

Total Tamarisk Area: 214 ha

Beetle-Impacted Area: 32.1 ha (15%)

Overall accuracy: 74%

Objective 1 - Results

Beetle impact is spatially variable:

- 182 (71%) reaches: <20% canopy impacted
- 58 (23%) reaches: 20 40%
- 16 (6%) reaches: 40-84%

Heavily impacted reaches: Glen Canyon, Marble Canyon, Western Grand Canyon

Objective 2 - Study Area

• Change detection map: 2009-2013

• Determine tamarisk biomass with lidar and allometric relationships

- Lidar point density of 100 points/m²
- The lidar points classified: vegetation versus ground returns
- A canopy height model: only canopies >3 m in height

• The canopy height model segmented to delineate individual tree

canopies

• Total aboveground tamarisk biomass (TAGB) was estimated using the canopy height (HT) and canopy area (CA) estimates (Evangelista et al., 2007):

$$Log_{10}(TAGB) = -1.1993 + 1.1090 Log_{10}(CA) +$$

$$0.8595 (HT) - 0.0927 (HT)^{2}$$

Objective 2 – Tamarisk biomass: mean = 8.7 kg/m^2 (SD = 17.6)

• The proportion of TAGB that was green biomass remaining on the canopy after beetle defoliation was estimated as:

TAGBglpresent = **0.335** * **0.093** * **TAGB**

• The proportion of the green leaf biomass lost from the canopy due to defoliation was estimated as:

TAGBglabsent = **0.665** * **0.093** * **TAGB**

Objective 2 – Tamarisk biomass: mean loss = $0.5 \text{ kg/m}^2 \text{ (SD = 1.12)}$

Objective 2 - Summary

- Tamarisk biomass loss
 - 25,692 kg leaf biomass lost across the entire study area
 - 313 kg of available Nitrogen in the leaves shed

Objectives 1 & 2: Summary

- Practical utility of the maps and data:
 - Identify locations of widespread defoliation for vegetation removal
 - Estimate biomass that would need to be removed mechanically, or consumed (fuel) by prescribed fire

Objectives 1 & 2: Summary

Objectives 1 & 2: Summary – Riparian Species Map

Western North American Naturalist 77(1), © 2017, pp. 22-30

FUNCTIONAL TRAITS AND ECOLOGICAL AFFINITIES OF RIPARIAN PLANTS ALONG THE COLORADO RIVER IN GRAND CANYON

Emily C. Palmouist^{1,5}, Barbara E. Ralston², Daniel Sarr^{1,6}, David M. Merritt³ Patrick B. Shafroth⁴, and Julian A. Scott³

Wetlands (2017) 37:635-646 DOI 10.1007/s13157-017-0895-3

ORIGINAL RESEARCH

Changes in Community-Level Riparian Plant Traits over Inundation Gradients, Colorado River, **Grand Canyon**

Miles E. McCoy-Sulentic 1 · Thomas E. Kolb 1 · David M. Merritt 2 · Emily Palmquist 3 · Barbara E. Ralston 4 · Daniel A. Sarr 3 · Patrick B. Shafroth 5

Ecology and Evolution

Explore this journal >

ORIGINAL RESEARCH

Variation in species-level plant functional traits over wetland indicator status categories

Miles E. McCoy-Sulentic, Thomas E. Kolb ☑, David M. Merritt, Emily C. Palmquist, Barbara E. Ralston. Daniel A. Sarr

Journal of Arid Environments

Available online 19 October 2017 In Press. Corrected Proof

Landscape-scale processes influence riparian plant composition along a regulated river

Emily C. Palmquist a R Barbara E. Ralston B David M. Merritt B Patrick B. Shafroth D David M. Merritt

Objectives 1 & 2: Summary

- Remote sensing classification maps show where plants exist in the riparian area
- New work on Grand Canyon riparian vegetation functional traits (Palmquist et al., 2017a, b; McCoy-Sulentic et al., 2017a, b) and species distribution and niche modelling (Butterfield et al., in prep.), shows us **why** plants exist where they do in the riparian area, and can also help us predict where they will exist in the future

Objective 3: Scaling up

- 1) Currently ongoing project: Nat Bransky
- 2) Develop a new algorithm for satellite-based detection
- 3) Scaling up to a larger region

 Airborne multispectral image

 Field data from Levi Jamison and Matt Johnson
- 4) Scaling to higher frequency detection

Objective 3: Satellite Remote Sensing

1) Satellite image:

Landsat image – 30 m pixels

Multi-temporal data: every 16 days

Identify sub-pixel defoliation

Objective 3: Satellite Remote Sensing

Important to identify locations of:

Defoliation

Total mortality

Remote sensing of tamarisk and defoliation: Future Work

Important to identify the most suitable image source:

WorldView-2 and -3 satellite images

Expensive commercial data

But has 2.4m resolution and lower temporal frequency

Thanks for listening!

- •Bedford, A. "Remote Sensing of Tamarisk (Tamarix spp.) defoliation by the Tamarisk Leaf Beetle (Diorhabda carinulata)along the Colorado River in Arizona "M.S. Thesis. Northern Arizona University, May 2016
- •Bedford, A, Sankey, TT, Sankey, JB, Durning, L, Ralston, B, *in review at Ecological Indicators*, Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA
- •Sankey, TT, Sankey, JB, Bedford, A, Horne, R, 2016, Remote sensing of tamarisk biomass, insect herbivory, and defoliation: novel methods and applications in the Grand Canyon region, Arizona, USA. Photogrammetric Engineering and Remote Sensing 82(8), pp. 645-652, doi: 10.14358/PERS.82.8.645