Biological Control of Arundo donax

Kirsten Sheehy Charlie Braman Tom Dudley Adam Lambert

Arundo donax (Giant Reed)

- Grows and spreads rapidly in a wide range of conditions
- 2. Promotes:
 - Flooding
 - Drought
 - Fire
 - Disturbance of native flora and fauna

Top 100 Invasive Species – International Union for Conservation of Nature (IUCN)

Arundo donax

- Native to S. Asia, Middle East
- Established in sub-tropical and semi-arid regions (and some temperate zones)

Arundo in North America

- Uses in California:
 - Erosion control
 - Thatching
 - Wind instruments
 - Horticultural

Why is Arundo a successful invader?

Flowers, but no viable seed

Why is Arundo a successful invader?

- Large, tough rhizomes
 - Spread and grow quickly
 - Successful under a broad range of stressful conditions

Tolerant of a range of conditions

Tolerant of physiological stress

 Regrows rapidly from droughts, floods, and fires

Why is Arundo a problem?

Drought

Debris accumulation

Arundo converts riparian areas from fire barriers to fire pathways

Arundo affects native species

Native vertical growth suppressed RIVRLAB, unpublished data

Native plant density declines
RIVRLAB, unpublished data

Arundo donax

• *Arundo* is the greatest threat to riparian systems in coastal Southern California (Bell 1997)

Research Questions

- How does *Arundo* invasion alter ecosystems?
 - Biodiversity and species composition (native survival)
 - Abiotic factors (especially water availability and fire risk)

- What insect herbivores (native and non-native) are associated with Arundo in southwest US?
 - Can they be the biocontrol component of an IPM toolkit?

Biocontrol

- Target organism (often exotic)
- Identify a natural enemy
- Test to prevent accidental host/target switching
- Established agents continue treatment

Complimentary to other management strategies

Potential for biological control

- Mechanical removal is expensive!
- Only genus member in North America – closest *Phragmites* australis
- Foreign exploration for agents has occurred in coordination with USDA-ARS at EBCL

Several host specific agents found

Natural enemies of Arundo in Europe

Over 60 natural enemies found!

Insects (specialists on Arundo)

• Hymenoptera: Eurytomidae

• Hemiptera: Diaspididae, Aphididae

• Diptera: Chloropidae

Fungi (specialists on Arundo)

• Puccinia, Selenophoma

2 species

2 species

19 species

4 species

Arundo wasp (Tetramesa romana)

Tetramesa from Texas

Fig. 2. Post-release emergence from release boxes and mortality rates of Tetramesa romana, relative to ambient temperature.

Racelis et al. 2010, Goolsby et al. 2016 (USDA-ARS, USDA-APHIS)

CA Infestation and Damage

Stems ~20.6 %
Side shoots ~33.3 %
Patchily distributed within systems

Can cause stem death, but kill mostly side shoots.

Arundo wasp (Tetramesa romana)

Future biocontrol agents?

- Scale insect (*Rhizaspidiotus donacis*).
 - Feeds at base of stem near rhizome.
 - Currently analyzing genetics (Z. Ozsoy and J. Gaskin)

Synergisms may be key to Biocontrol

Conclusions

• Arundo impoverishes assemblages, exacerbating water and fire stress in a wide range of areas

• A collaborative, strategic approach should be taken with *Arundo*, focusing on factors that slow invasion, as well as population management to ensure overall reduction occurs.

• Biocontrol within an IPM program supports longterm success in reducing *Arundo* abundance

Acknowledgements

Questions?

