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Photos by Hillary Cooper (top) & Tom Whitham (bottom) 

Cottonwood mortality on Bill Williams River  

National Wildlife Refuge – March 28, 2017  
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Every degree 

increase in temperature 

increases extinction 

risk so planners 

need to build this into 

their designs.  With 

current practices 1 in 6  

species will go extinct. 
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Stress Index
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 Species Richness 

r2=0.53, p<0.0001  

 

Abundance 

r2=0.53, p<0.0001 

Within a site, increased 

stress negatively affects 

arthropod diversity. 
 
Stress Index = (standardized 

branch dieback +  

number of needle cohorts + 

radial trunk growth) 

Stone et al. 2010 Oecologia 

155 arthropod species 



Genetic differences are large, so we can use genetics 

to mitigate the impacts of global change. 

           Genotype 1    2 

                             3     4 

Photo – Tom Whitham 2007 Morgan, Utah 



SEGA site at The Arboretum at Flagstaff – A network of 10 common gardens 

along an elevation gradient to develop solutions to global change 

The more locally adapted, the greater the impacts of climate change 



 

 

 

 

 

 

             

(sega.nau.edu) 
$4.5 million NSF/NAU, 

GO, and NGO 

Participants: USFS, 

NPS, BLM, BOR, TNC, 

AZ Game & Fish, Babbitt 

Ranches, Grand Canyon 

Trust, & The Arboretum 

at Flagstaff 
 

 

If plants must move to survive future climate conditions, how  

do we decide on which ecotypes and genotypes to use in  

restoration projects?  SEGA network provides next generation  

genetics-based infrastructure to scientifically make such decisions. 

 

Illustration by Paul Heinrich 



Reciprocal common gardens show fine scale local adaptation 

within the Sonoran desert ecotype 

Location map of 16 provenance collection sites (leaf icon) of Populus fremontii and  

the three common garden locations (leaf with circle). The central garden is also a  

collection site. The shading corresponds to the degree-days above 5°C (DD5) throughout 

the region: red represents high DD5, blue low DD5.  Cooper et al. 2019 Global Change Biology 

Reciprocal 

Common 

Gardens 

TNC 

Dugout Ranch, Canyonlands 

Cooler Garden – MAT 10.7 °C 

 

AZG&F 

  Horseshoe Ranch 

Intermediate – MAT 17.2 °C 

 

BLM 

Mittry Lake, Yuma 

Hot Garden – MAT 22.8 °C 



4600 tree common garden on Arizona 

Game & Fish Dept. lands at Horseshoe 

Ranch surrounded by Agua Fria  

National Monument. 

March 8, 2017 – Photos by Tom Whitham 

Populus fremontii  

field trial 

Indian 

 Creek 

Agua Fria Creek 



    Hot Garden                      Intermediate                        Cool Garden 
Long Growing Season                                                                                        Short Growing Season     

Solution #1 – Use populations from other sites that are already adapted 
to what the new environment will become.  

Population level mean (+/- 1 SE) survival correlations with bud set date in each of the three common 
gardens. Populations are colored by the mean annual temperature (MAT °C) of their source provenance. 
In Yuma, survival is highest in the hotter source populations and is positively correlated with later bud 
set. The opposite is true in the coldest Canyonlands garden.  Cooper et al. 2019 Global Change Biology. 
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Genotype 146                                                        Genotype 139 

Solution #2 – Genetics-based differences in architecture make upright  

and spreading trees more competitive with invasive tamarisk  

Sean Mahoney et al. 2018 Restoration Ecology; Photos by Heather Gillette  



Solution # 3 – Use naturally occurring hybrids that are 

more drought adapted than their parental species.  

Woolbright et al. 2014 Trends in Ecology & Evolution; Gitlin et al.  unpub. data 



Solution # 4 – Use 

genotypes from 

desert populations 

that root deeper and 

faster than genotypes 

from higher elevation 

populations. 

Jackie Parker’s rooting 

expt., unpub. data 



Solution # 5 – Inoculate plants with better mutualists. A 2000 tree pinyon 

pine common garden experiment shows that drought tolerance is 

genetically based and the mycorrhizae on drought tolerant trees are 

better mutualists (Gehring et al. 2017 PNAS).  Similar findings with 

cottonwoods (Markovchick unpub. data) 
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Species Abundance 

Solution # 6 – Use tree genotypes that are very plastic (resilient) with 

environmental change.  

Reaction norms show significanat G, E, and G x E interactions in the arthropod 

communities of Pinus edulis (Stone et al. 2019 Frontiers in Plant Science). 

 Record                             Near                                              Record                             Near 

Drought                          Normal                                           Drought                          Normal 

Resilient Tree 

Genotypes 

Non-Resilient Tree 

Genotypes 



Solution # 7 – Assisted 

migration distances 

should be as short as 

possible to assist 

migrating communities. 

 
A fundamental issue in 

assisted migration is if you 

move plants to mitigate the 

impacts of climate change, will 

plants acquire the 

communities of their home 

sites?  In other words, 

 if you build it will they come? 

Odgen Nature Center restoration site 

Photo by Tom Whitham 



Up to a point, if you built it they will come. 

With transfers of 18 and 48 km, garden and wild trees  

support similar communities, but at 90 km they are quite  

different (Keith et al. unpublished data). 



Removing invasive tamarisk and camelthorn on the Little  

Colorado River and restoring using new genetic guidelines   

with the support of Babbitt Ranches, the Nina Mason  

Pulliam Charitable Trust and the Wildlife Conservation Society. 
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