

Dolores River Watershed Assessment

Prepared for

Rivers Edge West U.S. Bureau of Land Management

DRAFT FINAL

Prepared by HDR

March 2, 2020

Table of Contents

1	Intro	oduct	tion and Background	1
	1.1	Loca	ation	′
	1.2	Pur	pose	′
1.3		Hist	ory	3
	1.4	Hyd	rology	5
	1.5	Rive	er Geomorphology	.10
	1.6	Eco	logy	.15
	1.6.	.1	Native Fish	.15
	1.6.	.2	Riparian Ecology	.21
	1.7	Wat	er Quality	.24
	1.8	Ope	erations and Water Rights	.28
	1.9	Lite	rature Review	.31
2	Wa	tersh	ed Characterization	.37
	2.1	Gen	neral Watershed Characteristics	.37
	2.1.	.1	Watershed	.37
	2.1.	.2	Topography	.37
	2.1.	.3	Geology	.38
	2.1.	.4	Soils	.39
	2.1.	.5	Land Use	.40
	2.1.	.6	Land Ownership	.41
	2.1.	.7	Precipitation	.41
	2.2	Data	a Sources	.52
3	Hyc	drolog	gic Assessment	.54
	3.1	Pur	pose	.54
	3.2	Sun	nmary of Gage Data	.54
	3.3	Pre-	- and Post-Impact Hydrologic Analysis	.57
	3.3.	.1	Methodology and Software	.57
	3.3.	.2	Gage Data Used	.62

	3.3	.3	Results and Discussion	64
3	3.4	San	Miguel River's Influence over Lower Dolores River	71
	3.4	.1	Methodology	72
	3.4	.2	Results and Discussion	75
3	3.5	Dolo	ores River Form and Function	77
	3.5		Channel Forming Discharge	
	3.5.		Baseflow Probabilities	
	3.5	.3	Pre-Impact Hydrologic Parameter Goals	79
4	Riv	er Ge	eomorphic Assessment – <i>later phase</i>	
5			: Analysis – <i>later phase</i>	
6		_	ps	
7			ces	
-				
٠.				
App	pendi	ix E .		. E
Ta	ble	of F	igures	
			inity Map	. 2
_			IC Diversion Structures	
_			tershed Areas along Dolores River	
_			D Hydrology Model from 1928 to 2005 (Source: DRD, 2006)	
			al annual flow at Bedrock and Dolores gages from 1974-1985 (Source: DRD, 200	
			ores River at Bedrock Average Daily Streamflow, USGS Gage 09169500 (Source	
_			2014, Figure A)	
			ach Delineations Doloress River below McPhee Dam (Source: DRD, 2006)	
			- and Post-spill Bar Sample, Dolores River Below Disappointment Creek (Source	
_			atigraphic column located in Watershed	
_			ub-Watersheds	
_			ppography	
_			eology Age Data	
_			eology Data	
_			pils Data	
⊢ıa	ure 1	5.18	and Use	47

Figure 16. Crop Types	48
Figure 17. Land Ownership	
Figure 18. Average Annual Precipitation	50
Figure 19. 100-Year, 24-Hour Precipitation Event	51
Figure 20. Gage Locations and Data Availability	55
Figure 21. IHA Analysis	
Figure 22. Contribution Comparison	74
Table of Plots	
Plot 1. Modified Gage Data	63
Plot 2. Flow Statistics for Dolores River Below Rico, CO	66
Plot 3. Flow Statistics for Dolores River at Dolores, CO	67
Plot 4. Flow Statistics for Dolores River at Bedrock, CO	67
Plot 5. Flow Statistics for Dolores River near Cisco, UT	68
Plot 6. Flow Statistics for San Miguel River near Placerville, CO	68
Plot 7. Influence of the San Miguel River at the Confluence, Pre-Impact vs Post-Impact	75
Plot 8. Influence of the San Miguel River at the Confluence in relation to the Dolores River at	
Bedrock gage, Pre-Impact vs Post-Impact	
Plot 9. Influence of the San Miguel River at the Confluence in relation to the San Miguel Rive	
Uravan gage, Pre-Impact vs Post-Impact	77
Table of Tables	
Table 1. Gage Data Reviewed in Draft DRD Hydrology Report	5
Table 2. Comparison of Flow-by with MVIC Diversions (Source: DRD, 2006)	
Table 3. Existing and Expected Geomorphic Conditions (Source: DRD, 2006)	
Table 4. Current status of native fish specifies (Source: OSC, 2014)	18
Table 5. Existing and Expected Ecological Conditions (Source: DRD, 2006)	22
Table 6. Post-Project Expected Water Quality (Source: 1977 EIS)	25
Table 7. Results from the Synoptic Tests at Location 1	27
Table 8. DWCD Project Allocations (DWCD, FAQ)	29
Table 9. References reviewed for literature review	31
Table 10. Sub-Watershed Characteristics	
Table 11. Sub-Watershed Topographic Information	38
Table 12. Sub-Watershed Soils Data Summary	
Table 13. Land Use Data Summary	
Table 14. Land Ownership Data Summary	
Table 15. Data Sources	
Table 16. Available USGS and State Gage Information	56
Table 17. IHA Hydrologic Parameters and their Ecosystem Influences (Source: IHA User's	
Manual, TNC, 2009, Table 1)	
Table 18. Modified Gage Data	
Table 19. Stream Segmentation for IHA Analysis	
Table 20. Summary of Low, Medium, and High HA Percentages and HA Average	
Table 21. Top Ten Ranked Parameters based on Dolores River at Bedrock, CO Gage	70

hdrinc.com

Table 22. Summary of Alternations by Parameter Group	71
Table 23. Gages used for Evaluation of the San Miguel River's Influence over Lower Dolores	
River	72
Table 24. Data and Results for Channeling Forming Discharge Comparison	78
Table 25. Recommended Baseflows (Speas, 2018) and Associated Post-Impact Exceedance	
Probabilities based on Annual Flow Duration Curve for Dolores River at Bedrock, CO Gage	78
Table 26. Recommended Baseflows (Speas, 2018) and Associated Post-Impact Exceedance	
Probabilities based on Annual Flow Duration Curve for Dolores River Near Cisco, UT Gage	79
Table 27. Pre-Impact RVA Variations	79

List of Acronyms

ac-ft acre-feet

AEP Annual Exceedance Probability

AGRC Utah Automated Geographic Reference Center

BHS Bluehead Sucker

BOR Bureau of Reclamation

CDPHE Colorado Department of Public Health and Environment

CDSS Colorado's Decision Support Systems

cfs cubic feet per second

CPW Colorado Parks and Wildlife

DEM Digital Elevation Model
DOI Department of the Interior
DRD Dolores River Dialogue

DRIP Dolores River In-stream-flow Partnership
DRRP Dolores River Restoration Partnership
DWCD Dolores Water Conservancy District

DWR Division of Water Resources
EA Environmental Assessment

EIS Environmental Impact Statement

FMS Flannelmouth Sucker

ft feet H High

IHA Indicators of Hydrologic Alteration

L Low

M Medium

M&I Municipal and Industrial

mm millimeters

MVIC Montezuma Valley Irrigation Company

NED National Elevation Dataset

NLCD National Land Cover Dataset

NOAA National Oceanic and Atmospheric Administration

NRCS National Resources Conservation Service

Project Dolores Project
RTC Roundtail Chub

RVA Range of Variability Approach

hdrinc.com 1670 BroadwaySuite 3400Denver, CO 80202-4824

(303) 764-1520

SMB Smallmouth Bass

sq. mi. Square miles

SSURGO Soil Survey Geographic Database

TNC The Nature Conservancy

TU Trout Unlimited

UMUT Ute Mountain Ute Indian Tribes

USDA United States Department of Agriculture
USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

Watershed Dolores River Watershed

WBD Watershed Boundary Dataset

1 Introduction and Background

1.1 Location

The Dolores River flows through the western part of Colorado and the eastern part of Utah. The Dolores River Watershed (Watershed) is located to the west of the San Juan Mountain Range and southwest of the Uncompander Plateau in Mesa, Montrose, San Miguel, Dolores, and Montezuma Counties, Colorado, and Grand and San Juan Counties, Utah. Approximately 88 percent of the Watershed is located in Colorado with the other 12 percent falling in Utah. McPhee Reservoir is located on the south side of the Watershed and diverts flow to the San Juan River basin for irrigation. The Watershed location is presented in Figure 1.

1.2 Purpose

Rivers Edge West (formerly known as the Dolores River Restoration Partnership [DRRP]), is a non-profit organization focused on advancing the restoration of riparian lands through education, collaboration, and technical assistance. Over the past decade, the DRRP has performed extensive restoration efforts which have achieved remarkable results. Much of their efforts have been focused on the removal of Tamarisk and other invasive species that have significant impacts on river systems in the southwestern United States. This, coupled with the modified hydrology of the system, has changed that nature of the Dolores River system.

In 2019, Rivers Edge West, with assistance and support for the Bureau of Land Management (BLM), initiated a project to assess the hydrologic conditions in the Watershed. There were two specified goals for this assessment:

- 1. Increase the understanding of the historical and current hydrologic regime to better understand and aid in future management and restoration of the Watershed.
- 2. Produce a watershed summary and planning document to be used as an informational reference for the general public, private landowners, and federal agencies.

At the date of this Report, three components have been developed:

- 1. A literature of previous studies developed in the Watershed, including: history, hydrology river geomorphology, ecology, water quality, and operations and water rights.
- 2. A general characterization of the Watershed, including descriptions of: topography, geology, soils, land use, precipitation, and land ownership.
- 3. A hydrologic assessment aimed at addressing the following questions:
 - a. How has the hydrologic regime in the Watershed changed with the construction and operation of McPhee Dam and Reservoir?
 - b. What is the influence of San Miguel River on the Dolores River downstream of their confluence and how has the influence of the San Miguel River changed with the construction and operation of McPhee Dam and Reservoir?
 - c. How does the current hydrology impact the form and function of the Dolores River?

VICINITY MAP

DOLORES RIVER WATERSHED ASSESSMENT
FIGURE 1

1.3 History

The flow regime of the Dolores River is naturally variable, historically contributing between approximately 73,000 to 793,000 acre-feet (ac-ft). Water development has significantly changed river flows over the past 130 years. Significant flows from the Dolores River have been diverted into the San Juan River Watershed for agricultural purposes via trans-basin diversion for over a century. The first diversions, of minimal amount, occurred in 1878 by the Lost Canyon and Montezuma Ditch Companies (Voggesser, 2001). In the 1880's, the Montezuma Water and Land Company (now the Montezuma Valley Irrigation Company [MVIC]) developed two physical trans-basin diversions (Main Canal No. 1 and Main Canal No. 2) to divert flows from the Dolores Basin to irrigable lands in the San Juan River Watershed, as shown in Figure 2. These diverted the majority of flows from the end of the spring runoff until the end of the irrigation season, typically October, up until construction of the Dolores Project (Project) in 1984 (which includes construction of the McPhee Dam and Reservoir). These diversions resulted in a dry riverbed below the two diversions during the late summer (Dolores Watershed Plan, Appendix 2; DRD, 2005; Porter, 2001).

Figure 2. MVIC Diversion Structures

The Dolores Water Conservancy District (DWCD) was created to support, organize, and manage the Project with the United States Bureau of Reclamation (BOR) (Dolores Watershed Plan, Appendix 2). The Project was authorized by the Colorado River Basin Act of September

30, 1968 (Public Law 90-537), with the Environmental Impact Statement (EIS), Definite Plan Report completion, and initial ground breaking in 1977.

The purpose of the Project is to store and regulate flows of the Dolores River primarily for irrigation, municipal and industrial (M&I) use, recreation, fish and wildlife, and production of hydroelectric power. Secondary purposes include flood control and economic redevelopment. Major infrastructure components of the Project include McPhee Dam and Reservoir, the Great Cut Dike, 84 miles of canals (including the Dove Creek Canal, South Canal, Dolores Canal, and Towaoc Canal), 20 miles of pipeline, 84.7 miles of lateral systems, two hydroelectric power plants, and six pumping plants that facilitate the flow of water (BOR). MVIC's Canals 1 and 2 were also improved.

The Project supplies water to farmers for irrigation in the Dolores District in Dolores County, but also supplements farmers in the Montezuma Valley who have received private water from MVIC since the 1880's. It was predicted that average annual flows in the Dolores River would be reduced by 105,200 ac-ft while average annual flows in the San Juan River would be increased by 24,300 ac-ft (BOR, 1977; DRD, 2005a). The Project also satisfies the Ute Mountain Ute Indian Tribes' (UMUT) Winters Doctrine claims to the Mancos River, and a year-round bypass flow for a fishery downstream of the McPhee Dam. Minimum reservoir releases to the Dolores River were established to maintain flow for fish habitat: 78 cubic feet per second (cfs) during wet years, 50 cfs during normal years, and 20 cfs during dry years. (BOR, 1977; DRD, 2005a; Porter, 2001).

Construction of McPhee Dam was completed in 1983 and filling of the McPhee Reservoir was completed in 1987. There was a constant release of 150 cfs until the drought of 1988 to 1992. In accordance with the EIS, March 1, 1990 was classified was a "dry" year. As such, 20 cfs was released from the McPhee Reservoir. Subsequent precipitation that occurred in the Watershed in April would have changed the status to a "normal" year. However, the DWCD and BOR followed the EIS guidelines and maintained a 20 cfs release. By June, it was observed that this "dry" release was having a negative impact on the downstream fishery. This lead to a six year process to change "flow release" to a "managed pool" via an Environmental Assessment (EA) in 1997 (DRD, 2005a; Porter, 2001, DWCD).

Recreational boating on the Dolores River began in the 1930's, and became increasingly popular in the 1970's. The Dolores River remains a popular boating destination when appropriate flows are released from McPhee Reservoir. In 1976, it was found the river was suitable for inclusion under the National Wild and Scenic Rivers System (1986 Wild and Scenic Rivers Act) (BLM, 1976; Dolores Watershed Plan, Appendix 2). However, local opposition stopped formal inclusion into the federal system, and a proposal for a National Conservation Area has been drafted to maintain the Wild and Scenic qualities. Local stakeholders are currently working to pass this legislation.

The decision to change from "flow release" to "managed pool" included a variety of parties working together to create a pool of 36,500 ac-ft of water for the fishery. Previously, only 29,300 ac-ft were allocated downstream for the pool. The additional water needed to increase the pool was obtained from the DWCD, who was compensated for their loss (DRD, 2005a; Porter, 2001).

In 1997, Trout Unlimited (TU) and DWCD provided leadership by creating an ad hoc group called the Dolores River In-stream-flow Partnership (DRIP). This group's main purpose was to "work together to create a [fish] pool of 36,500 ac-ft." However, this fish pool is still short by 4,700 ac-ft at the time of this report.

The drought from 2000 to 2004 caused the DRIP process to be suspended. In the fall of 2003, the San Juan Citizen's Alliance and DWCD formed a collaborative effort known as the Dolores River Dialogue (DRD). This group's main focus is to "explore management opportunities, build support for and take action to improve the ecological conditions in the Dolores River downstream of McPhee Reservoir while honoring water rights, protecting agricultural and municipal water supplies, and the continued enjoyment of boating and fishing" (Dolores Watershed Plan, Appendix 2).

1.4 Hydrology

The flow regime of the Dolores River has changed over the past 130 years due to trans-basin diversions to the San Juan River Watershed (Dolores Watershed Plan, Appendix 2). The most significant hydrologic analysis to date was completed by the DRD. The following is a summary of their analyses and results.

The DRD developed a *Hydrology Report* in 2005 with the purpose of describing "the amount of water expected to flow downstream of McPhee Reservoir through spills and baseflow releases. It also needs to describe the realistic opportunities to manage or enhance those flows." This report is still in draft format, and has unfinished sections. The completed portion of the report summarizes two main types of analysis: watershed hydrology and operational hydrology of McPhee Reservoir. The watershed hydrology was analyzed by developing four metrics using data from a variety of streamflow gages located in the Watershed (see Table 1 and Figure 3). Discussion of results was not included in the draft report. These metrics include:

- 1. Total annual flow and peak flood flow frequency at the Dolores River at Dolores gage.
- Post-McPhee spill hydrology by reviewing the Dolores River at Dolores vs Dolores River at Bedrock stream gages, reviewing DWCD total out-of-basin diversions, and peak flow frequency below McPhee Reservoir.
- Analysis of various downstream gages to evaluate total flow and peak flow variability.
- 4. Development of Indicators of Hydrologic Alteration (IHA) analyses at the Dolores River at Bedrock and Dolores River at Cisco stream gages.

Table 1. Gage Data Reviewed in Draft DRD Hydrology Report

Gage Name	Gage Number
Dolores River at Dolores	USGS 09166500
Dolores River below McPhee Reservoir	DOLBMCCO-DWR
Disappointment Creek near Dove Creek	USGS 09168500
Dolores River at Slickrock	USGS 09168730
Dolores River near Bedrock	USGS 0917110
San Miguel River at Uravan	USGS 09177000
Dolores River at Gateway	USGS 09179500
Dolores River near Cisco, UT	USGS 09180000

The analysis of operational hydrology of McPhee Reservoir included the amount of water expected to flow downstream of McPhee Reservoir through baseflow releases and spills. The baseflow release analysis examined the total flow available for downstream release based on a full-allocation year and used patterns reminiscent of recent historical releases to model monthly flows. The spill analysis included hydrologic modeling of the Upper Dolores River and various allocation assumptions. Similar to the watershed hydrology, discussion of results was not included in the draft report.

In 2006, the DRD developed a Correlation Report, which is also still in draft format. The DRD reviewed a variety of hydrologic scenarios along the Dolores River, including:

- 1. Flows before installation of the MVIC trans-basin diversions.
- 2. Flows after installation of the MVIC trans-basin diversions.
- 3. Flows after installation of McPhee Reservoir.

Using this information, the study developed a model of 77 years of flows (1928-2005) on the Dolores River by estimating the frequency and magnitude of spills given actual inflow gage records at Dolores, storage in McPhee Reservoir, and full Project demands. The results of this model are presented in Figure 4. The purpose of this model was to provide an estimate of expected future water availability as a foundation for correlating potential opportunities to manage spills and baseflow releases with expected benefits to the downstream environment.

The annual flow conditions in the Dolores River before installation of the MVIC trans-basin diversions were determined by comparing flows at the Dolores River at Bedrock and Dolores gages. This relationship was analyzed using daily flow data between 1974 and 1985 and adding back in daily diversion records from the MVIC Canals Nos. 1 and 2. This analysis showed that total flow at Bedrock was greater than that at Dolores, which is expected due to their differences in watershed size (see Figure 3). However, during dry periods, flow at the Dolores gage is almost the same as at the Bedrock gage likely due to minimal contributed flow along this section of the Dolores River. During wet periods, the total flow at the downstream Bedrock gage is 50 to 60 percent greater than the upstream Dolores gage. This suggests the flows experienced in the downstream Watershed increase proportionally with the total precipitation in the watershed. Peak flows were also compared. They generally had the same trend, but with greater variability (see Figure 5). Note: the authors of this Report suspect these flows may have been overestimated as it is assumed losses were not included in analysis.

This study then reviewed annual flow conditions on the Dolores River for representative dry, average, and wet water years after installation of the MVIC trans-basin diversions. With the exception of bypass flows required to meet senior water demands, MVIC's diversions took all the river's flow for all water conditions. The runoff volumes are presented in Table 2. During the study period, flow-by volume ranged from 22 to 81 percent of the total run-off volume. The volume of water during the driest year (28,000 ac-ft) is close to the fish pool (29,300 ac-ft). Note: the authors of this Report assume "flow-by" is defined as water released through the McPhee Dam and Reservoir.

Figure 4. DRD Hydrology Model from 1928 to 2005 (Source: DRD, 2006)

Figure 5. Total annual flow at Bedrock and Dolores gages from 1974-1985 (Source: DRD, 2006)

hdrinc.com

Table 2. Comparison of Flow-by with MVIC Diversions (Source: DRD, 2006)

1928-1973	Largest (ac-ft)	Smallest (ac-ft)	Average (ac-ft)
Runoff Volume	793,000	130,000	350,000
MVIC Only			
MVIC Diversions	150,000	64,000	131,000
Flow-by (occurs every year)	643,000	28,000	219,000
Flow-by as % of runoff volume	81%	22%	63%

The DRD also developed a Core Science Report in 2005. The following was stated in this report: "Impacts to the flow regime of the Dolores River occurred before the construction of McPhee Dam. Prior to construction of McPhee Dam, the mean annual flow at Dolores (above McPhee Dam) was 763 cfs and decreased to 465 cfs at Bedrock (94 miles downstream from the dam). The decrease was caused by diversions in place prior to construction of McPhee Dam.... McPhee Dam increased the depletion of the annual flows from 30% to 69% of natural flow... Construction of McPhee Dam in 1984 affected the flow regime of the Dolores River by altering the spring peak flows and the magnitude and variability of the base flow. Between 1986 and 2004, the spring peak was essentially eliminated downstream from the dam for six of the 19 years of record. In an average runoff year, both the magnitude and duration of the spring peak flow are decreased. Correlation of the peak flows above and below the dam show a distinct decrease in the peak flows below the dam."

This study developed an Indicators of Hydraulic Alteration (IHA) analysis at both the Dolores River at Bedrock and Cisco stream gages (see Figure 3). At the Bedrock gage, the parameters exhibiting the greatest impact by the dam are the annual maximum flows (approximate 40 percent decrease) and the duration of the high pulse (approximate 60 percent decrease). At the Cisco gage, the impacts of the dam on the flows are not as significant as at the Bedrock gage. The greatest change is in the one and three day maximum flows (approximate 13 percent decrease).

In addition, a variety of studies have reviewed select stream gage data to make statements on how flows have been impacted with the installation of McPhee reservoir. Examples include:

A paper by American Whitewater (Fey, et al., 2014) states that "with the completion of McPhee Dam and Reservoir in 1987...69 percent of the historic flow of the Dolores River is depleted annually...as opposed to 39 percent before Project construction, attributable to pre- Project allocations to the MVID." The paper includes a graphic of Dolores River at Bedrock average daily stream flow both pre- and post-impact, shown in Figure 6.

Figure 6. Dolores River at Bedrock Average Daily Streamflow, USGS Gage 09169500 (Source: (Fey, et al., 2014, Figure A)

A paper on "Flow Management and Endangered Fish in the Dolores River, 2012-2017" (BOR, 2018) states that the "average annual discharge of the Dolores River declined from 504 cfs (as measured at Bedrock, CO) to about 240 cfs after dam construction in 1984....The lowermost reaches of the Dolores River receive considerable flow input...from the San Miguel River on a vear-round basis..."

1.5 River Geomorphology

Both the DRD Core Science Report (2005) and Correlation Report (2006) also reviewed impacts of the McPhee Reservoir on river geomorphology. This is defined as the interaction of sediment transport, flow, geology, and vegetation that impacts the aquatic and riparian life of a river.

The primary limiting factor for the Dolores River geological and ecological processes is flow, and reductions of flow are cause for geomorphic changes in the Dolores River. Some of these changes include: narrowing and reduction of depth in the channel, growth of the lateral and midchannel bars, reduction in sediment mobility, and encroachment of the riparian vegetation. The channel bed morphology has been simplified, and there is reduced channel-floodplain connectivity along sections of the Dolores (DRD, 2005b).

The DRD Correlation Report (2006) conducted an analysis on the geomorphic conditions for current and expected future water availability. The Dolores River was broken into eight reaches for this analysis, as shown in Figure 7. These reaches were determined based on gradient, sinuosity, chemical parameters, vegetation, and potential limiting factors to stream channel movement and formation. The changes seen in each reach based on the existing and expected geomorphic conditions are presented in Table 3.

Figure 7. Reach Delineations Doloress River below McPhee Dam (Source: DRD, 2006)

Table 3. Existing and Expected Geomorphic Conditions (Source: DRD, 2006)

Reach ¹	Geomorphic Conditions: Existing	Expected Future Water Availability
1	 Low flows over prolonged drought are unable to perform minimal geomorphic functions. May not be possible to mobilize embedded riffles. General goal to enhance natural process of "channel downsizing" to accommodate overall decrease in stream power. 	 "Small spill" flows allow for geomorphic work consistent with the channel maintenance objectives. Impacts of 5,000 cfs on embedded riffles is unknown. Whether or not lateral migration and sedimentation outweighs the benefits of channel scour is unknown. The natural process of "channel downsizing" is improved with tapered hydrograph on larger spill volumes.
2	 Current flow management maintains geomorphic function of pool scour and sediment transport. Tributary sediments will accumulate in pools and diminish habitat quality during prolonged dry periods. 	 Ecological flow management would maintain current sediment transport. Larger spill scenarios will improve pool scour and riffle mobilization. Tributary sediments will accumulate in pools and diminish habitat quality during prolonged dry periods.
3	 Current flow management maintains geomorphic function of pool scour and sediment transport. Tributary sediments will accumulate in pools and diminish habitat quality during prolonged dry periods. 	 Ecological flow management would maintain current sediment transport. Larger spill scenarios will improve pool scour and riffle mobilization. Tributary sediments will accumulate in pools and diminish habitat quality during prolonged dry periods.
4	 Current flow management maintains geomorphic function of pool scour above Disappointment Creek. Significant accumulation of fines below Disappointment Creek. Impairs habitat quality. Riparian vegetation encroachment on sediment induces "channelization" and reduces floodplain connectivity. 	 Ecological flow management will maintain and improve geomorphic function of pool scour. Riparian vegetation encroachment on sediments will induce channel entrenchment and reduce floodplain connectivity in some alluvial reaches. Ecological flow management would maximize ability to scour fines, but floodplain dislocation in some reaches may require treatments to improve function. "Large spill" scenario could induce channel entrenchment, further disconnection from the floodplain.
5	 "Hybrid" between reaches 2-3 upstream and reach 4 affected by significant contribution of sediments. Lack of regular spills and sediment deposition affects native fish habitat. 	 "Hybrid" between reaches 2-3 upstream and reach 4 affected by significant contribution of sediments. Lack of regular spills and sediment deposition affects native fish habitat. Ecological flows should improve scouring.
6	Active channel is entrenched and disconnected from historic floodplain. Current management will perpetuate condition.	Active channel is entrenched and disconnected from historic floodplain.

Reach ¹	Geomorphic Conditions: Existing	Expected Future Water Availability
	 Specifics on sediment flux are unknown. Geomorphic character changes between the Paradox Valley and confined canyon above San Miguel River may offer better habitat. 	 Ecological management should improve sediment flux. Geomorphic character changes between the Paradox Valley and confined canyon above San Miguel River may offer better habitat. Large spills will improve pool scour and habitat availability for native fish species.
Report only	provides observations for Reaches 1 through 6	

The DRD 2005 Correlation Report developed steps to restore the Dolores River to pre-impact conditions. The geomorphological goals of this process are:

- 1. Scour fine sediment from pools and interstices of riffle substrate (annually, if possible).
- 2. Maintain channel dimensions through alluvial reaches; scour pools of course sediment; sort gravels; mobilize bar sediments and other in-channel depositional features (annually if possible; hydrology modeling suggests 2-4 years likely).
- 3. Inundate floodplains and backwater/remnant channel habitats; deposit fine sediments on floodplain/overbank areas (annually if possible; hydrology modeling suggests 2-4 years likely).
- 4. Occasionally provide the stream power to mobilize riffles, resetting primary productivity within the river; release imbedded channel sediments; scour near channel or low-floodplain surfaces (5-10 year recurrence); induce downstream meander migration in alluvial reaches.
- 5. Investigate the effect of sediment introduced from Disappointment Creek on downstream habitats and geomorphology. In general, investigate sediment flux by reach and ability of river to move sediment contributions from tributaries.
- 6. Refine the notion of bankfull flows for alluvial reaches; compare with hydrologic expectations to discern optimal channel dimensions to meet habitat needs of aquatic communities.

In 2017, a controlled release of McPhee was conducted due to increased snow pack, water elevations in McPhee, and the predicted precipitation for the 2017 year. Colorado Parks and Wildlife (CPW) conducted pre- and post-release monitoring on the Dolores River at five sites via Wolman pebble counts, cross section surveys, erosion stakes, painted patches, and sediment traps (CPW, 2018).

In general, the high flows released caused minimal bank erosion and riparian vegetation removal due to the highly vegetation banks. However, channel and floodplain interaction occurred, which resulted in observed sediment deposition and scour (CPW, 2018). Additional observations from this release include:

- 1. Noticeable evidence of scouring and evacuation of sediment in the channel and substantial deposition of this sediment on the floodplain.
- 2. Evidence of scouring and evacuation of material within surveyed pools at most alluvial ecological monitoring sites. Evidence of floodplain deposition confirming that the controlled release reset the vertical relief and increased the overall pool volume.
- 3. Little bank erosion observed and no increase in the channel width. This suggests that the Lower Dolores River is stabilizing within a narrower, more confined channel.
- 4. Fine sediments (2 millimeters [mm]) were almost completely removed from the survey site at the Slickrock Downstream location. This indicates that higher-energy sites within the active channel were equally coarsened by the managed release, improving breeding and foraging habitat for native fish.
- 5. The median grain size increased from 85 mm to 108 mm on the high energy, low-floodplain environment at the Slickrock Downstream site.

- 6. Erosion stakes on the low-floodplain, high energy site showed substantial scour at the Slickrock Downstream site. Cobble movement was noted, indicating that larger particles were mobilized during the release.
- 7. Minimal lateral bank erosion was noted at the Slickrock Downstream site. However, sediment deposition occurred in the floodplain where the river slowed because of dense willows. Noticeable channel incision was observed in the pre-existing side channel.
- 8. Side channel reactivation was observed at several locations.

A sample of the bar sample particle sizes pre- and post-spill is shown in Figure 8.

Figure 8. Pre- and Post-spill Bar Sample, Dolores River Below Disappointment Creek (Source: CPW, 2018)

1.6 Ecology

1.6.1 Native Fish

The Dolores River contains a range of fish communities. Cold-water fish species (example: trout) are found at the downstream end of McPhee Reservoir. The Dolores River then transitions to having warm-water fish species as it flows downstream (Speas, 2018). There has been a decline in a variety of warm water fish species in the Colorado River Basin, with three specifically in the Dolores River: Roundtail Chub (RTC, *Gila robusta*), Flannelmouth Sucker (FMS, *Catostomus latipinnis*), and Bluehead Sucker (BHS, *Catostomus discoboulus*) (OSC, 2014; Bestgen, et al., 2011). The current status of these three fish species is presented in Table 4.

In 2011, a report was developed by a team of fish biologists to better understand status and trends of the three fish species and uncover opportunities for population improvements (Bestgen, et al., 2011). Subsequently, the Lower Dolores Working Group, a sub-group of the DRD, completed the "Lower Dolores Implementation, Monitoring and Evaluation Plan for Native Fish" in 2014. The plan is constructed to specifically address opportunities presented in the 2011 report (Bestgen, et al., 2011). Native fish protection is of interest to the myriad stakeholders in the Dolores River Basin for the fish themselves, and to protect water rights.

Four additional native fish in the Colorado River Basin are the Humpback Chub, Colorado Pikeminnow, Bonytail, and Razorback Sucker. All are listed as endangered under the Endangered Species Act; these fish are protected by the United States Fish and Wildlife Service (USFWS). The Dolores River is not listed as a critical habitat for these four endangered fish, however, Colorado Pikeminnow, Razorback Sucker, and Bonytail have been shown to historically use the lower reaches, and the presence of Predatory Smallmouth Bass (SMB) in the Dolores is of concern to the USFWS. The Upper Colorado Endangered Fish Recovery Program (UCEFRP) is USFWS-led and is a multi-agency partnership to recover endangered fish in the upper Colorado River basin. The following was recommended by Speas of the UCEFRP (2018) to improve fisheries:

- Spill management Spills from McPhee Reservoir should be managed with flow volumes that correspond to peak flow thresholds for channel maintenance and sediment transport.
- 2. Thermal modification There should be sufficient flows in March and April to suppress river temperatures and prevent spawning prior to peak flows.
- 3. Sediment transport There should be an increase in the magnitude and frequency of spill events to restore the pre-impact stream power.
- 4. Baseflow management The optimum baseflow is 150 to 300 cfs. This is likely not achievable, so the following are recommended: 25 to 35 cfs in the winter, 50 cfs in the spring, 60 to 120 cfs in the summer, and 40 to 60 cfs in the fall.

Following the 2017 controlled release of McPhee Reservoir, the CPW also conducted fisheries monitoring (CPW, 2018). The main observations following this release were:

- Slickrock Canyon is still a stronghold for native species, with three native species (FMS, BHS, and RTC) comprising 88% of the total catch out of 591 fish caught. Specifically, FMSs comprised 53% of the catch, RTC 32%, and BHS 3%.
- Overall density of native fish is still low in Slickrock Canyon, yet a fair number of suckers are still being caught, particularly flannelmouths.
- In Slickrock Canyon, there was a 95% increase in catch per unit effort (CPUE) over 2007 for the three native fish species. In 2017, 0.43 fish per minute were caught, whereas in 2007 only 0.22 fish per minute were caught.
- RTC reproduction was evident at most sites, including the Dove Creek Pumps reach,
 James Ranch Reach, and Big Gypsum Reach. Young-of-the-year bluehead and FMSs
 were also detected, but at low levels. Findings about 2017 reproduction are preliminary
 because detection of young-of-year fish is difficult; population surveys in future years will
 provide a better indication of how much reproduction of native species occurred this
 year.
- Few non-natives were found in Slickrock Canyon.
- One white sucker was found in Slickrock Canyon. This species had not previously been documented on the Dolores River below McPhee Dam. White suckers hybridize with native suckers and are a serious threat to the genetic integrity of native suckers.

- SMB (non-native predator fish that eat native fish) were found to be persistent in the Pyramid Reach, and more frequent removals of these species is recommended. CPUE was 34.6 SMB/hour in 2017, versus 13.4 in 2007, and 18 in 2011.
- No SMB were found downstream of Disappointment Creek, including in Slickrock Canyon.
- Removal of non-native fish was only possible because of the combination of the large managed release and the use of approximately 2,800 (ac-ft) of fish pool water.
- More catfish, red shiner, and sand shiner were found in 2017 (versus surveys in 2012, 2013, and 2014), which was troubling. Shiner habitat overlaps with the habitat of young native fish, and shiners eat the natives.
- As in past years, higher trout biomass was sampled with higher discharge.

Table 4. Current status of native fish specifies (Source: OSC, 2014)

Reach	General Description	Roundtail Chub	Flannelmouth Sucker	Bluehead Sucker	Non-Native Fishes
Reach 1	Cold-water release precludes use by native warm-water species.	Unoccupied No potential	No potential	Unoccupied No potential	 Brown trout abundant (80%) and self-sustaining Rainbow trout common (20%) Combined trout biomass is about 43% of a typical Rocky Mtn. stream. Green sunfish rare.
Reach 2	 Cold- to cool-water habitat (thermally transitional waters). Use by all warm water native fish documented during Ponderosa Canyon surveys in 1993 FMS/BHS not documented in 2005 or 2007 surveys. RTC present. 	 Relatively low abundance Difficult to assess Habitat suitability ebbs and flows with water discharge. 	 Status unknown but may be extirpated from reach limited potential or seasonal occupation only 	Status unknown Based on juveniles found downstream, at least seasonal occupation during spawning season	 Brown trout relatively low abundance (less than 50 adults per mile) Fire and drought (warm water) limit population. Green sunfish status unknown.
Reach 3	Good habitat (structure and instream cover, riffle-poolrun complexity). Sedimentation from tributaries Lack of sediment mobility may affect habitat availability.	Abundant Adults show small body size relative to downstream and other river populations.	 Rare Absent from most DCP surveys 1 juvenile in 2013 survey No FMS in seine samples 	 Rare Absent from most DCP surveys 8 juvenile in 2013 No BHS in seine samples 	 Brown trout rare to common near Dove Creek pumps (less than 50 fish per mile) and decreasing to rare near Pyramid. SMB rare to common at Dove Creek pumps and common at Pyramid. Green sunfish common. Channel catfish rare.

Reach	General Description	Roundtail Chub	Flannelmouth Sucker	Bluehead Sucker	Non-Native Fishes
Reach 4	 Pyramid to Disappointment – good structure and instream cover; riffle-pool-run complexity (similar to Reach 3) Disappointment to Big Gypsm Valley – heavy sedimentation, lack of structure, and turbid water. Reach above Disappointment Ck. has abundant clean cobble used by FMS for spawning. 	Rare but slightly larger than in Reach 3.	 Uncommon but need more data on utilization of Pyramid reach May be important for spawning. 2012 seine survey found a few young Dead picked up after 2013 Disappointment Creek flash flood 	Uncommon No juveniles in 2012 seine surveys. Several large adults captured above Disappointment Creek in 2007.	 Brown trout rare to absent. SMB common to abundant down to Disappointment Creek confluence. SMB rare below Disappointment Creek. Heavy sediment and flash flooding may limit SMB population expansion. downstream of Disappointment Creek. Green sunfish common. Black bullhead common. Channel catfish rare.
Reach 5	 Good structure, riffle- runpool complexes, and turbid water. Native fish made up 79% of catch in 2007 survey. 	 Approximately 2 fish per mile caught Larger fish caught Spawning or fry use may be linked to tributaries. 	 Approximately 2 to 3 fish per mile caught Larger adults than upstream populations. 	 Extremely rare (1 fish caught per 5 miles of canyon) Larger adults caught. 	 SMB, channel catfish, green sunfish, and common carp are rare. Black bullhead status unknown.
Reach 6	 Salty, channelized, and hot 	No data available	No data available	No data available	No data available
Dolores River below San Miguel confluence	 Good canyon habitats with structure, riffle- pool-run complex, and influenced by San Miguel inflows Native fish 51% of catch in 2007 survey; 	 Uncommon in surveys (approximately 2 to 10 fish per mile) Smaller size class river miles 	 Uncommon (approximately 7 to 10 fish per mile) Good age structure amongst sampled fish. 	 Uncommon (approximately 3 to 10 fish per mile) Good age structure amongst sampled fish. 	 Channel catfish and carp are common (20-30% of fish captures). Status of green sunfish, black bullhead, white sucker, uncertain.

Reach	General Description	Roundtail Chub	Flannelmouth Sucker	Bluehead Sucker	Non-Native Fishes
	 76-93% natives in 2010 surveys on 3 reaches. 				
Overall	 Habitat intact, mostly contiguous, and lacking hybridization with white sucker Regional 3-species recovery priority. Flow management/out of basin diversions remain significant challenge for reach between Dove Creek pumps and the San Miguel River confluence (approximately 70 miles) 	 Abundant in Reaches 3 and 4 but small Better age structure but less abundant below Disappointment Creek and San Miguel River. 	 Gone or nearly gone from Reaches 1 through 3 Reach 4 may be an important spawn area. Juveniles in reach 4. Good age structure below San Miguel River confluence. 	 Gone from Reaches 1 and 2 Some evidence of reproduction in Reach 3, but less so in Reaches 4 and 5 Part of the intact native fish assemblage below the confluence with the San Miguel River. 	 Brown trout most abundant in first 12 miles, then absent approximately 40 miles downstream of McPhee Reservoir. SMB common in about 20 miles from Dove Creek pumps to Disappointment Creek. Channel catfish and carp most common non-native species below San Miguel.

1.6.2 Riparian Ecology

The altered flow regime on the Dolores River caused from the installation of McPhee Reservoir has impacted the riparian vegetation assemblage along the lower Dolores River. A decrease in native cottonwood regeneration has been observed with an increase in tamarisk, a non-native woody species. In the past decade, a large multi-stakeholder effort by the public-private DRRP has removed almost 2,000 acres of tamarisk from along the river. This work is ongoing, and an increase in native coyote willow can now be seen in abundance in the riparian area.

The lower Dolores River includes multiple habitats. These include Narrowleaf Cottonwood communities, Ponderosa Pine dominant communities, Juniper and Piñon communities, and some Tamarisk dominant communities. Willows are present along most reaches of the Dolores River. Cottonwoods are not the dominant woody plant species in the riparian zone. The suspected reason for the reduction is the regulated flows from the McPhee Reservoir (DRD Core Science Report, 2005). A 2016 study reaffirms this reasoning, as a decrease in cottonwood cover in floodplains and an increased willow cover in river banks along the Dolores River was observed since completion of the McPhee Reservoir (Dott, et al., 2016).

Various other studies have shown that flow regulation can impact riparian ecology. Regulated flows can reduce the number of peak flow events while increasing the magnitude and duration of low-flow conditions. These low flows can lead to an increase in vegetation such as tamarisk, which can then lead to bank armoring and channel narrowing by tamarisk and willow (Dott, et al., 2016). Another study suggests that when annual streamflows are less than approximately 162,000 ac-ft per year, then the growth of three riparian tree species (Populus angustifolia, Populus deltoides subsp. wislizenii, Acer negundo) decreases (Coble and Kolb, 2012).

The DRD Correlation Report (2006) also conducted an analysis on the riparian ecology conditions for current and expected future water availability for each study reach. The changes seen in each reach are presented in Table 5.

Table 5. Existing and Expected Ecological Conditions (Source: DRD, 2006)

Reach ¹	Ecological Conditions: Existing	Ecological Conditions: Expected Future Water Availability
1	 Current flow management presents minimal opportunities to encourage sexual reproduction of cottonwoods and may be reducing long-term viability of off-channel wet meadow habitats. Woody vegetation primary colonizer of "low floodplain" habitat and serving to narrow channel naturally. Combining riparian plantings with mechanical treatments is a feasible approach. 	 Ecological flow management may present opportunities to encourage sexual reproduction of cottonwoods if timing recession feasible with inflow/outflow constraints of higher flow. Long-term viability of off-channel wet meadow habitats and floodplains improved by more frequent flows near 1800-2000 cfs on small spill years. Woody vegetation primary colonizer of "low floodplain" habitat and will continue to facilitate channel narrowing. Combining riparian plantings with mechanical treatments is a feasible approach, but needs to be maintained by supportive flow regime.
2	 Ponderosa pine and oak woodland community is unique in the Dolores River basin. Current management appears to preserve this community. The main threat is increasing the non-native forbs in understory. Non-spill periods encourage development of dense low-flow sedge/grass/willow associations. 	 Ponderosa pine and oak woodland community is unique in the Dolores River basin. Ecological flow management will preserve this community and may diminish threats of non-native forbs in understory. Non-spill periods encourage development of dense low-flow sedge/grass/willow associations.
3	 Ponderosa pine and oak woodland grades downstream into box-elder, willow, and silver buffaloberry in near-stream environment. Non-spill periods encourage development of dense near-channel sedge/grass/willow associations. Current management preserves this community. Main threat is non-native weeds in understory, potential reduction in historical, higher elevation wet meadow habitats. 	 Ponderosa pine and oak woodland grades downstream into box-elder, willow, and silver buffaloberry in near-stream environment. Non-spill periods encourage development of dense low-flow sedge/grass/willow associations on low streambank. Ecological flow management would preserve near-stream community, but may increase scour of low-flow streambank. Main threat is non-native weeds in understory, potential reduction in historical, higher elevation wet meadow habitats. Ecological flows aimed toward historic bankfull and above should improve conditions of these habitats.
4	 Willow/sedge and silverberry community is relatively stable above Disappointment Creek. There is channel narrowing below Disappointment Creek. The entrenchment reduces diversity and increasing the tamarisk and understory knapweed threatens native communities. 	 Ecological flows will maintain willow/sedge and silverberry community above Disappointment Creek. Below Disappointment Creek it is possible that an increase in connection of the floodplain to the channel and appropriate recession limb timing could create the conditions for seed propagation of cottonwoods.

Reach ¹	Ecological Conditions: Existing	Ecological Conditions: Expected Future Water Availability
	 Remant gallery cottonwoods not dominant and disconnected from dynamic river processes necessary for proper age class structure. The debate remains whether they were native or induced by settlement. 	Channel narrowing and entrenchment threatens native communities.
5	 Relatively intact riparian community of willow and New Mexico privet above Coyote Wash. Phragmites act to stabilize channel margins with willow. Community changes rapidly to tamarisk-knapweed association below Coyote Wash, which may be due to natural salinity, historic land use, or both. 	 Relatively intact riparian community of willow and New Mexico privet above Coyote Wash. Phragmites act to stabilize channel margins with willow. Community changes rapidly to tamarisk-knapweed association below Coyote Wash, which may be due to natural salinity, historic land use, or both. Ecological flows will not serve to significantly affect riparian ecology through reach 5, although appropriate reach morphology, peak flow timing, and recession of the hydrograph.
6	 Significant intrusion of tamarisk throughout this reach, aided by this species' high tolerance to salt, giving it a competitive advantage over native woody species. Any strategy must contemplate significant salt concentration in surface water, groundwater, and soils. 	 Significant intrusion of tamarisk throughout this reach, aided by this species' high tolerance to salt, giving it a competitive advantage over native woody species. Any strategy must contemplate significant salt concentration in surface water, groundwater, and soils. Very high peak flows could scour sites recently colonized by tamarisk, and if timed with seed-set and appropriate hydrograph recession, could enable cottonwood establishment.

Following the 2017 controlled release of McPhee, riparian vegetation monitoring was also conducted along ecological monitoring sites and by comparison of historical photographs (CPW, 2018). A summary of findings related to riparian ecology is presented below.

- A comparison of historic repeat photos demonstrates willow encroachment on point bars and river banks from 2003 to 2017, and appear to also have increased in density from 2003 to 2017 along the river bank at the Big Gypsum site.
- There was evidence of floodplain scouring and movement of sediment resulting in deposition and creation of some new small bare areas.
- The configuration of the channel has minimally changed.
- The density of riparian vegetation (mostly willow) and consequent armoring of river banks resulted in very little bank erosion or thinning/removal of riparian vegetation, creating few new bare areas where cottonwood seedlings could establish.
- No new cottonwood seedlings were found on ecological monitoring sites. The most common non-cottonwood seedlings found were willow, occurring at multiple survey areas.
- Comparison of historic vegetation transects found average willow stem density did not change between 2010 and 2017, indicating the managed release did not reduce willow density. Willows are serving to armor the river banks, resulting in channel narrowing, and represent one of the biggest changes in recent times on the Lower Dolores.
- Percent bare ground was over 40% at the Big Gypsum site, resulting in some seed germination on new seedbeds, but seedlings here were also found to be predominantly willow.

The solution to riparian habitat improvement has been found through the cooperative efforts of landowners, land managers, and ecologists within the sideboards of operational obligations. In addition, the relatively uncontrolled San Miguel River may provide some guidance for native restoration objectives for the Dolores below McPhee (DRD, 2005b; DRD, 2006).

1.7 Water Quality

The 1977 EIS reported on water quality conditions in the Dolores River before the completion of McPhee Reservoir. Between 1969 and 1975, the Colorado State Department of Health collected 36 water samples along the Dolores River. Based on these samples, the presence of the heavy metals iron, zinc, and mercury as well as arsenic and selenium were found. However, none of these elements exceeded the recommended limit for domestic water, and local water treatment plants have the capability to remove harmful substances. Mining activities, including uranium, have taken place approximately 40 miles upstream of the Town of Dolores, and has historically introduced heavy metals and toxic substances into the Dolores River. The quality of the water improves downstream due to dilution by tributaries. Additionally, the alkalinity of the water decreases the threat heavy metals pose to aquatic organisms.

Turbidity, temperature, dissolved oxygen, and nutrient levels within the Dolores River, before the completion of the McPhee Reservoir, were within normal limits for a healthy and diverse

biological system. The 1977 EIS stated that diversions by the MVIC have caused deterioration of the water quality downstream of the reservoir due to flow depletions.

The EIS predicted that water quality of the Dolores River would decrease during the construction period of the reservoir because of increased turbidity and sedimentation. However, the uniformity of the flows would generally improve the water quality downstream by removing high turbidity in spring runoff, while increasing summer flows. Increased summer flows would also dilute ground water and decrease salt concentrations.

Table 6 presents the predicted post-project water quality.

Table 6. Post-Project Expected Water Quality (Source: 1977 EIS)

Predicted return flow entering tributaries						ributaries
		Average	-	Maximum	Minimum	Quality of
	Area	existing	Average	in	in	return
Local drainage to	drained	flow	annual	September	April	flow
San Juan River	(acres)	(secft.)	acre-feet	(secft.)	(secft.)	(mg/1)6/
Monument Creek	1,640	intermittent	790	1.5	0.7	600
Cross Canyon	16,878	intermittent		12.8	6.2	600
			1/750			500
Hovenweep Canyon	1,642	intermittent	660	1.3	.6	600
Yellow Jacket Canyon	12,900	2/13	3,900	7.9	3.4	1,030
McElmo Creek3/	21,100	45.9	3,850	8.4	2.6	2,360
			4/3,100			500
Navajo Wash	697	3	450	. 9	. 4	6,650
			5/500			500
Aztec Wash	590	intermittent		.9	-2	8,440
Cowboy Wash	1,091	intermittent	800	1.8	. 5	5,700
Coyote Wash		intermittent		6.8	2.6	8,510
1/ Municipal and						
2/ Flow measured	at Color	ado-Utah State	e line. In	cludes inte	rmittent fl	ows from
Hovenweep Canyon.						
3/ McElmo Creek						
4/ Municipal and		al return flow				

The salinity of the Dolores River is attributed to the presence of Paradox Formation salt domes. In 2014, the USGS developed a report titled *Assessment of Dissolved-Solids Loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah,* which reviewed the salinity issues within the Colorado River. In 1974, Congress enacted the Colorado River Basin Salinity Control Act to enhance and protect the water quality of the Colorado River. In 1995, the USBR was given the task of implementing a basin-wide salinity program. Significant financial investments and salinity control measures on private agricultural lands significantly reduced salt loadings. Nearly 205,000 tons of dissolved solids were discharged into the Dolores River prior to mitigation. Therefore, in 1996 the USBR implemented a series of brine-withdrawal wells in the alluvium along the Dolores River and a deep-injection well to dispose of the brine, to decrease the amount of salt in the river. Within 4 years, these brine-withdrawal wells had intercepted more than 90% of the dissolved solids previously discharged into the Dolores.

This report conducted four synoptic measurements at 20 different locations along the Colorado River. Location 1, USGS Stream Gage 09180500: Colorado River near Cisco, UT, is located just downstream of the confluence of the Colorado and Dolores Rivers. During the measurements, discharge and dissolved-solids concentration were measured.

Table 7 shows the results from synoptic tests 2, 3, and 4 at Location 1. The results suggest that the dissolved-solids loading in the Colorado River is negligible. The four synoptic tests completed between 2003 and 2011 along the confluence of the Colorado and Dolores Rivers indicated the Paradox formation, local salt anticlines, the Intrepid Potash evaporation ponds, and the perennial tributaries did not appear to be significant sources of salinity.

The BOR's withdrawal wells have been connected to recent earthquakes in Paradox Valley, therefore the wells have not been in operation. A draft EIS with four alternatives for salinity mitigation in the Paradox Valley Unit is currently available, and the BOR is anticipating an ROD in summer of 2020.

Table 7. Results from the Synoptic Tests at Location 1

U.S. Geological Survey streamgage Colorado River near Cisco, UT (09180500)								
Measurement date	Discharge (ft³/s)	Specific conductance (μS/cm at 25 °C)	Dissolved- solids concentration (mg/L)					
Synoptic 2								
10/3/10	3,540	1,190	758					
10/4/10	3,650	1,230	785					
10/5/10	3,680	1,220	782					
10/6/10	3,800	1,210	772					
10/7/10	3,950	1,240	791					
10/8/10	3,930	1,170	743					
minimum	3,540	1,170	743					
maximum	3,950	1,240	791					
mean	3,760	1,210	772					
Synoptic 3								
10/25/10	5,120	1,200	766					
10/26/10	5,670	1,170	748					
10/27/10	5,360	1,170	745					
10/28/10	5,020	1,170	745					
minimum	5,020	1,170	745					
maximum	5,670	1,200	766					
mean	5,290	1,180	751					
Synoptic 4								
9/12/11	5,190	991	621					
9/13/11	5,140	990	621					
9/14/11	5,090	999	627					
9/15/11	5,240	990	621					
minimum	5,090	990	621					
maximum	5,240	999	627					
mean	5,170	992	622					

1.8 Operations and Water Rights

The DWCD is the primary entity responsible for operating McPhee Dam and Reservoir, in coordination with the BOR. Water stored in the reservoir provides water for irrigation, M&I uses, controlled flows for downstream fish and wildlife purposes, recreational boating and electrical power generation. The capacity of McPhee Reservoir is 381,000 ac-ft with a maximum active capacity of 229,000 ac-ft. The 30-year average reservoir inflow is 327,000 ac-ft. McPhee Dam and Reservoir are the major storage features of the Project; the system also includes a system of canals, tunnels, and laterals to deliver water to over 61,000 acres of land. Approximately 85 percent of stored water is allocated for irrigation, 11 percent is allocated for the fish pool, and 4 percent is allocated for M&I uses. Specific DWCD Project allocations are presented in Table 8

Water stored in McPhee Reservoir consists of both "Project Water" and "Non-Project Water." Project Water consists of the storage created when McPhee Dam was built and delivered via the Project delivery systems. These uses and users include: municipal and agricultural water for the Ute Mountain Ute Reservation in Towaoc, Colorado; Full-Service Farmers around Dove Creek; municipal water for Cortez and Dove Creek; and for the downstream fish pool. With the exception of municipal water, all entities are subject to equal shortages when declared by DWCD and BOR rather than adhering to individual water right priority dates.

Non-Project Water consists of historical MVIC water rights up to 150,000 ac-ft a year. A carriage contract between BOR and MVIC allows this storage to occur. Non-Project Water is managed by MVIC, and is therefore not subject to the same shortages or stipulations as Project Water. MVIC is not allowed carry-over storage rights. Water stored in Groundhog Reservoir and Narraguinnep Reservoirs is MVIC Non-Project Water. MVIC's project water is on average 13,700 ac-ft and is limited to 26,300 irrigable acres rather than the entire MVIC service area.

Multiple statutes, agreements, and environmental assessments drive how water is managed in the Dolores River Basin. These instruments include:

- Colorado River Storage Project Act of 1956
- Colorado River Basin Project Act of 1968
- 1977 Final Environmental Impact Statement
- 1977 Dolores Project Colorado Definite Plan Report
- 1977 Repayment Contract between the United States and the DWCD
- 1986 Colorado Ute Indian Water Rights Final Settlement Agreement
- 1989 Repayment Contract between the United States and the Ute Mountain Ute Tribe\
- 1989 Water Rights and Salinity Control Act
- 1996 Environmental Assessment for the fish pool allocation concept
- 2000 Operating Agreement between the BOR and DWCD
- 2001 DWCD Carriage Contract FEIS
- Annual operating plans
- Other memorandums and agreements.

Table 8. DWCD Project Allocations (DWCD, FAQ)

Allocation Holder	Primary Allocation AF	Adjustments AF	Total AF	Notes
Full Service Farmers	55,282	6,985	62,267	Adjustments include 985 AF re-allocated from downstream water rights +6000 AF from Class B Stock.
Ute Mountain Ute Tribe	23,300	1,217	24,517	The adjustment includes 417 AF from downstream water rights re-allocation + 800 AF in San Juan Basin F&W water. Not counted in the adjustment is past Farm and Ranch leases which have recently averaged 4,000 AF/YR.
Downstream Fishery	29,300	2,498	31,798	Adjustment includes 1,274 AF in senior downstream water rights, plus 524 AF from downstream water rights re-allocation and 700 AF in Paradox Salinity Unit augmentation, released with fish pool.
MVIC	Variable: Approx. 80,000 to 150,400	Variable: Approx. 0 to 60,000	Variable: Approx. 90,000 to 150,400	MVIC Project Water allocation is variable. MVIC has 26,300 acres of land defined in USBR contracts as irrigable and therefore eligible for Project Water. MVIC Project water is calculated by totaling the MVIC non-Project supply, applying this supply toward the full 37,500 acres (per contract) irrigated by MVIC, then making up the difference for the 26,300 irrigable acres so they receive a full supply of 4.01 AF/Acre. Call Water stored in McPhee at no charge is the first water spilled since Project Water gets priority. The active capacity of Groundhog and Narraguinnep Reservoirs is counted as non-Project supply. By contract, MVIC must limit their total non-Project diversions to 150,400 AF for all irrigable and class 6 lands (totaling 37,500 acres) and Project Water can only be applied to the 26,300 irrigable acres. Average annual MVIC Project Water supply per contract was estimated to be 13,700 AF, which is the basis for MVIC's flat rate share of DP O&M charges, regardless of MVIC's actual annual diversions. An additional 3,000 AF of non-Project stock water is available to MVIC under their historic water rights. MVIC's total water supply is a mix of their historic CO water rights, the majority, combined with smaller contractual supply from the DP.
M&I City of Cortez	2,300		2,300	
M&I Town of Dove Creek	280		280	
M&I DWCD	5,120		5,120	
San Juan F&W Water	800	ev	800	Diverted to federal mitigation wetlands and Totten per contract
Totals	267,782	70,700	278,482	Neither MVIC Non-Project nor Project Water is included in these totals, but Class B portion (max. 6,000 AF) is listed under DWCD adjustments.

Yearly operations of McPhee Reservoir are dependent on annual inflow conditions. Operating on a "fill before spill" criteria means that the reservoir must be full before water exceeding Project allocations is released from McPhee Reservoir. Spills occur approximately 50 percent of the time (DRD, 2005). On years with no spills, water managers determine if any Project Water shortages need to occur, or if full allocation is possible. CPW works with water managers to delineate the release pattern of the "fish-pool" allocation. Each spring, DWCD and BOR work with the Colorado River Forecast Center to determine runoff patterns and volume while considering recommendations from the Monitoring and Recommendation Team composed of stakeholders. These stakeholders include: DWCD, BOR, Dolores River Boating Advocates, American Whitewater, CPW, the Nature Conservancy (TNC), MVIC, BLM, and other relevant stakeholders.

BOR is required to consider recreational attributes of the Dolores River, including releasing appropriate volume and duration of water for whitewater boating. The current operational Agreement states McPhee operations should: "... optimize the amount of available water for Project purposes and benefit whitewater and recreational boating, may necessitate releases from McPhee Reservoir in anticipation of a forecasted spill" (2000, AOP p. 4).

1.9 Literature Review

References reviewed for this study are presented and summarized in Table 9.

Table 9. References reviewed for literature review

Title	Author	Year	Summary	Classification
Assessment of dissolved- solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah	Christopher L. Shope Steven J. Gerner	2014	The purpose of this study was to conduct four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.	Water Quality
Climate Change and the Upper Dolores Watershed: A Coldwater-fisheries Adaptive Management Framework.	Trout Unlimited and Mountain Studies Institute	2017	Produced by the Dolores River Anglers, the TU chapter aims to provide a framework to delineate what streams in the Upper Dolores watershed are likely to provide viable trout populations through the end of the 21st century. Further, it suggests relevant management strategies and ecological factors of survivable trout populations in the face of climate change. This report identifies climate change impacts to the Upper Dolores Watershed.	Biology Climate Hydrology
Core Science Report	Dolores River Dialogue	2005	This report included review of literature and previously prepared documents related to the Dolores River, discussion of linkages between flow and ecological and physical processes in the Dolores River, and identification of key data gaps.	Hydology Geomorphology Ecology
Defining Recreational Streamflow Needs in the Lower Dolores River: Integrating Specific and Overall Evaluations of Flow and Recreation Quality	Nathan Fey Evan Stafford Kristina Wynne	2014	This study used a web-based approach to collect information on whitewater flows in five segments of the Lower Dolores River and organized the data to define flows that provide for certain recreational needs. Results from this study provide resource managers with better information on whitewater flow-needs in the Dolores River basin, which can be used in the development of annual operating plans for McPhee Dam and to improve the scheduling and	Hydrology Water Rights and Operations

Title	Author	Year	Summary	Classification
			prediction program for releases to the Lower Dolores River.	
Dolores Project Colorado: Final Environmental Statement	Bureau of Reclamation	1977	This was EIS for the Project, which evaluated diversion of the Dolores River to the San Juan River Basin via the construction of the McPhee Dam and Reservoir. The document includes a scope of work, summary of environmental impacts and unavoidable adverse effects and alternative options considered, including four modifications of the plan, four alternative uses of water, and non-development.	History Hydrology Ecology Water Rights and Operations
Dolores River Instream Flow Assessment, Project Report	Vandas, Steve.	1990	From the BLM Montrose Office, this study quantifies values associated with the Dolores River including aquatic and riparian habitat, and other stream channel characteristics related to proper channel maintenance. This report documents the post-impact streamflow regimes, present flow dependent resource values and analyzes water management options for securing instream flow protection.	Hydrology Geomorphology Operations Recreation
Dolores River Wild and Scenic Study Report	Colorado Department of Natural Resources	1976	A report compiled by state and federal agencies assessing and recommending various segments of the Dolores River basined on their Wild and Scenic attributes, or "Outstandingly Remarkable Values"	Hydrology Ecology Water Rights and Operations Recreation
Dolores River, Colorado: The River of Sorrows	Bureau of Land Management	Undated	The purpose of this report was to summarize the evaluation of the Dolores River as to its potential for designation under Section 5(d) of the National Wild and Scenic Rivers Act PL 90-542. It described the characteristics of the Dolores River, specifically: the history of the area, hydrological characteristics, and description of surrounding geomorphology. The report concluded that the Dolores River appeared to have qualities for inclusion under the National Wild and Scenic Rivers Act.	History Hydrology Geomorphology
DRAFT Correlation Report: Summary of Hydrologic and Scientific Findings And Resulting Matrix Templates.	Dolores River Dialogue	2006	The purpose of this report was to (1) conduct a water availability analysis, (2) analyze potential downstream environments, (3) create a correlation between the previously mentioned efforts, and (4) create a matrix of doable alternatives with	Hydology Geomorphology Ecology

Title	Author	Year	Summary	Classification
			identifiable consequences to inform potential actions.	
DRAFT Hydrology Report	Dolores River Dialogue	2005	The purpose of this study was to perform a hydrologic analysis to describe the amount of water expected to flow downstream of McPhee Reservoir through spills and baseflow releases. Historical watershed hydrologic data available from gaged stations is described, and a model for McPhee Reservoir operations hydrology was developed.	History Hydrology
Flow Management and Endangered Fish in the Dolores River during 2012-2017: U.S. Bureau of Reclamation	Dave Speas	2018	The purpose of this study is to assess the extent to which flow management on the Dolores River may contribute to endangered fish recovery through the analysis of three lines of hydrologic and ecologic evidence. Through this, the authors found that available information is insufficient to identify linkages between flow management at McPhee Dam and endangered fish recovery.	Hydrology Ecology
History of Dolores River Water Use, the Dolores Project, the Rise of Environmental Consciousness Nationally and Locally, and Stakeholder Collaboration to Promote Conservation of Lower Dolores River Natural Resources			The purpose of this appendix was to provide factual background information that undergirds the DRD purpose statement. It discusses rights to be honored, the nature of a water right under Colorado law, the necessity for agricultural and municipal water supplies, the history of Dolores River water use, the development of the Project, the rise of environmental consciousness nationally and locally, and the recognition of and response to downstream Dolores River ecological impacts.	Ecology Operations and Water Rights
Lower Dolores River 2017 McPhee Reservoir Manages Release Ecological Monitoring and Evaluation	Colorado Parks and Wildlife The Nature Conservancy Colorado Mesa University	2018	The purpose of this report was to summarize the 2014 study, Lower Dolores River Implementation, Monitoring and Evaluation Plan for Native Fish, and describe its recent implementation. During this study, monitoring focused on sensitive native fish and the assessment of in-channel and riparian habitats, and pre- and post-release data were collected.	Geomorphology Ecology
Lower Dolores River Implementation, Monitoring and Evaluation Plan for Native Fish	Dolores River Dialogue	2014	The purpose of this study was to create an IM&E Plan that supported community needs while protecting fisheries, riparian health, and the quality of the boating experience below McPhee Reservoir.	Hydrology Ecology Operations and Water Rights

Title	Author	Year	Summary	Classification
			The Implementation Plan was designed to maintain, protect, and enhance native fish populations in the Dolores River based on habitat conditions such as channel maintenance and optimal base flow. This biological opinion was prepared in response to a request for formal consultation on the Project by	
Memorandum: Biological Opinion for Dolores Project, Colorado	United States Fish and Wildlife	1980	the Upper Colorado Regional Director. This opinion states that the proposed project is not likely to jeopardize the continued existence of the bald eagle, American peregrine falcon, black-footed ferret Uinta Basin hookless cactus, or the Mesa Verce cactus. However, it will likely jeopardize the continued existence of the endangered Colorado squawfish, bonytail chub, and the humpback chub.	Ecology
Native Riparian Tree Establishment Along the Regulated Dolores River, Colorado	Adam P. Coble Thomas E. Kolb	2013	The purpose of this study was to investigate influences of flow regulation of the Dolores River, Colorado, by McPhee Dam on establishment of three native riparian tree species (<i>Populus angustifolia, Populus deltoides subsp. wislizenii, and Acer negundo</i>). The results of this study suggest that flow releases form McPhee Dam into the Lower Dolores River between 1985 and 2008 provided appropriate conditions for <i>Populus</i> establishment, particularly at low topographic positions within the active channel in recent years, whereas <i>A. Negundo</i> may require greater flows to bolster establishment at the higher topographic positions where it often occurs.	Ecology
Operating Agreement, McPhee Dam and Reservoir	United States Bureau of Reclamation	2000	Legal agreement between the U.S. Department of Interior BOR and the DWCD. Signed in 2000, the agreement expires in 2025.	Water Rights and Operations
Riparian Tree Growth Response to Drought and Altered Streamflow along the Dolores River, Colroado	Adam P. Coble Thomas E. Kolb	2012	The purpose of this study was to investigate influences of streamflow regulation by McPhee Dam on the Lower Dolores River, Colorado, on the growth of three riparian tree species (<i>Populus angustifolia</i> , <i>Populus deltoides subsp. wislizenii</i> , and Acer negundo). The results of this study provide guidelines for flow releases form McPhee Dam to	Ecology Water Operations

Title	Author	Year	Summary	Classification
			mitigate drought impacts on riparian tree growth along the Lower Dolores River.	
River of Sorrows: The History of the Lower Dolores River Valley	Kendrick, D. Gregory Smith, A. Duane Dishman, Linda Gerhold, Maureen	1981	A National Park Service digital book regarding the history of the Project. Four chapters include: 1) A historical overview of the Dolores River Valley, 2) Ranching and farming in the Lower Dolores River Valley, 3) Eastern Capital and Frontier initiative: The History of the Montezuma Valley Irrigation System; 4) McPhee, Colorado: A 20th Century Lumber Company Town	History
Status and Trends of Flannelmouth Sucker Catostomus latipinnis, Bluehead Sucker Catostomus discobolus, and Roundtail Chub Gila robusta, in the Dolores River, Colroado, and Opportunities for Population Improvement: Phase II Report	Kevin R. Bestgen Phaedra Budy William J. Miller	2011	The purpose of this report was to (1) summarize information that describes status and trends of the three species and to discuss reasons for their decline, and (2) present opportunities for improvement of the native fish community. Through this, the authors determined that RTC are rare in upstream reaches and abundant, but highly fluctuating or declining, in downstream reaches, FMS is rare in upstream reaches and present in variable and declining abundance in the remainder of the study areas, and BHS rare in the entire study area and is declining in most reaches. Although reason for the declines are uncertain, the authors present nine potential management opportunities to improve the native fish community.	Ecology
Temporal and Spatial Variation in Riparian Vegetation and Floodplain Aquifers on the Regulated Dolores River	C.E. Dott G.L. Gianniny M.J. Clutter C. Aanes	2016	The purpose of this study was to compare three long-term study sites above and below McPhee Dam and describe observations of decreased cottonwood cover on floodplains and increased willow cover on river banks since dam completion on the Dolores River. Through this, the authors found that floodplain habitats below dams exist under artificially extreme drought and inform how biologically diverse riparian systems will be impacted by a drying climate.	Ecology
The Dolores Project	Voggesser, Garett.	2001	A BOR history of the Project and water users.	History
The Dolores River Dialogue as an Example	Carolyn Dunmire Ann Oliver Chuck Wanner	2010	The purpose of this report was to describe the formation of the DRD, and how scientific investigation is managed, conducted, and funded by	Hydrology Ecology Water Rights and

Title	Author	Year	Summary	Classification
of Long-term Collaborative Decision-making	Mike Preston Jim Siscoe David Graf Chester Anderson Randy Carver Marsha Porter-Norton		the DRD, as well as examples of recent decisions and actions undertaken by the DRD including: the Lower Dolores River Plan Working Group contributing to the update of BLM's 1990 Dolores River Corridor Management Plan and Dolores River Watershed Plan.	Operations
The River of Sorrow (film)	Rig to Flip	2015	This is an hour-long documentary describing the overall situation of the Dolores River. It is the ideal platform to gain on overall perspective of water rights, stakeholders, and recreational boating on the Dolores River.	Water Rights and Operations
Transbasin Water Transfer Dolores River Southwestern Colorado	John Porter	2001	The purpose of this report was to summarize the history of water diversions from the Dolores River, including commentary on western expansion and development, the BOR's Project, and the Water for Everyone Tomorrow PACKage (WETPACK) project.	History Water Rights and Operations
Vegetative and geomorphic complexity at tributary junctions on the Colorado and Dolores Rivers: a blueprint for riparian restoration	Margaret S. White Brian G. Tavernia Patrick B. Shafroth Teresa B. Chapman John S. Sanderson	2018	The purpose of this study is to investigate spatial patterns and extents of tributary influence on riparian habitat complexity in the near channel zone along regulated reaches of the Colorado and Dolores Rivers in the western United States. The results of this study indicate that tributary junctions deliver critical resource inputs on regulated systems, providing for increased geomorphic and land cover diversity upstream and downstream of tributaries. Additionally, the authors found that response patterns were non-linear and discontinuous, which could potentially be influenced by the degree of mainstream flow regulation.	Geomorphology Ecology

2 Watershed Characterization

2.1 General Watershed Characteristics

The following describes the spatial characteristics of the Dolores Watershed (Watershed) based on publicly available information (as of August 2019). These characteristics include; topography, geology, soils, land use, precipitation, and land ownership. A summary of this data, including publication year and date downloaded, is described in Section 2.2.

2.1.1 Watershed

The Watershed is approximately 4,634 square miles (sq. mi.) based on the United States Geological Survey's (USGS) 2015 Watershed Boundary Dataset (WBD). The Watershed is located in Southwest Colorado, to the northwest of the San Juan mountain range, and southwest of the Uncompander Plateau. Approximately 88 percent of the Watershed is located in Colorado with the other 12 percent falling in Utah. The Watershed generally drains from southeast to northwest, with flows draining into either the Dolores River or the San Miguel River, a tributary of the Dolores River. The Dolores River eventually outfalls into the Colorado River near the eastern Utah border.

For this assessment, the watershed was broken into three sub-watersheds based on WBD-HUC8 (see Figure 10). Table 10 presents these sub-watershed characteristics, including: WBD identifier, drainage area, drainage source, and length of the main stem river in the sub-watershed. The length of river is determined from data derived from the 2014 National Hydrography Dataset (NHD).

The contributing drainage area to McPhee Reservoir is located within the Upper Dolores subwatershed, and is approximately 30 percent of the total Upper Dolores sub-watershed. The McPhee Reservoir primarily diverts flow into the San Juan River basin for irrigation.

	Table 10.	Sub-Watershed	Characteristics
--	-----------	---------------	-----------------

Sub-Watershed	WBD Identifier	(sq. mi.)				
Lower Dolores 14030004 923 Dolores River 62						
Upper Dolores¹140300022158Dolores River178						
San Miguel 14030003 1553 San Miguel River 78						
¹ Includes 645 sq. mi. above McPhee Reservoir						

2.1.2 Topography

The Watershed ranges in elevation from a high elevation of approximately 14,250 feet (ft) in the southeast portion of the watershed to 4,100 ft at the confluence of the Dolores River with the Colorado River (northwest portion of the watershed), as shown in Figure 11. The highest slopes are found in the mountains in the southeast portion of the Watershed, and along drainages. Table 11 contains a summary of topographic information for each sub-watershed, including minimum and maximum elevation, basin slope, and general sub-watershed trends based on 1/3 arc-second (10 meter) digital elevation model (DEM) data from the 2017-2019 National Elevation Dataset (NED).

Table 11. Sub-Watershed Topographic Information

Sub- Watershed	Maximum Elevation (ft)	Minimum Elevation (ft)	Average Sub- Watershed Slope (percent) ²	General Trends
Lower Dolores	12,716	4,100	28	Flows drain from both the east and west sides of the sub-watershed to the Dolores River located in the middle of the sub-watershed. Flows are then drained out of the sub-watershed via the Dolores River into the Colorado River. The highest point within the sub-watershed is located on the southwest side.
Upper Dolores ¹	14,256	4,816	21	Flow generally drains from the southeast (mountainous) portion of the subwatershed towards the north side of the basin via the Dolores River. The steepest slopes are located in the mountainous area.
San Miguel	14,024	4,813	20	Flow generally drains from the southeast (mountainous) portion of the subwatershed to the northwest via the San Miguel river. Slopes east to west. The steepest slopes are located in the mountainous area.

¹ The McPhee Reservoir Sub-Watershed ranges from 14,256 ft in the southeast portion of the subwatershed to 6,928 ft at the reservoir.

2.1.3 Geology

Geological information was obtained from the 2005 USGS Mineral Resources through the NRCS Data Gateway tool. The geological conditions are presented in Figure 12 and Figure 13. A stratigraphic column located in the Watershed is presented in Figure 9.

The following information is based on a variety of sources (Ake, et al., 2010; NPS, 2018; USGS, 2011).

The Watershed is located in the Colorado Plateau physiographic region in Western Colorado. The Colorado Plateau is comprised of a series of plateaus and mesas located within an immense basin surrounded by highlands. Precambrian basement rock underlies the Plateau with primarily overlying sedimentary rock with igneous deposits in the volcanic areas of the region. Landforms in the region have been formed by intense water and wind erosion.

Rock exposed in the Dolores Canyon consists of Pennsylvanian age limestone to Jurassic age Entrada sandstone. The upper rim of the canyon is capped by Cretaceous age Dakota sandstone forming steep cliffs. The Dolores River is thought to have originally flowed south to join the San Juan River prior to the uplift of Sleeping Ute Mountain in the late Cretaceous, altering the course of the river to its present day location. Near-surface salt deposits up to 14,000-ft thick underlie Paradox Valley in the northern part of the watershed. The Dolores River picks up thousands of tons of salt flowing through the valley each year. As part of the Colorado

² Calculated based on the results from a slope grid generated from topography

River Basin Salinity Control Project, the saline groundwater was collected in wells and injected deep beneath the surface into Precambrian rocks formations. The injection process induces large amounts of earthquakes in the region, most of magnitude 2.5 or lower and undetectable by humans. The saltwater is no longer injected because of this.

Figure 9. Stratigraphic column located in Watershed

2.1.4 Soils

Soils data were obtained from the Soil Survey Geographic Database (SSURGO) through the United States Department of Agriculture (USDA) National Resources Conservation Service's (NRCS) Web Soil Survey tool (2018 for Colorado, 2013-2015 for Utah). This database contains a variety of soils-related information, including Hydrologic Soil Group (HSG), which is a

description of runoff potential when soils are saturated (NRCS, 2007). The HSG for the Watershed is presented in Figure 14.

The Upper Dolores and San Miguel sub-watersheds primarily consist of Hydrologic Soil Group (HSG) C (approximately 45 percent), which is classified as having moderately high runoff potential. It typically has between 20 and 40 percent clay and less than 50 percent sand (NRCS, 2007). The Lower Dolores sub-watershed is primarily unmapped (approximately 32 percent), and the mapped portion consists largely of both HSG C and D (total of approximately 46 percent). HSG D is classified as having high runoff potential when thoroughly wet. It typically has greater than 40 percent clay and less than 50 percent sand (NRCS, 2007). Table 12 shows a summary of the soils data for the sub-watersheds.

Table 12. Sub-Watershed Soils Data Summary

Sub-Watershed	Soil Group A	Soil Group B	Soil Group C	Soil Group D	Unmapped	Other ¹
Lower Dolores	5%	17%	26%	20%	32%	0%
Upper Dolores	2%	21%	44%	23%	9%	1%
San Miguel	3%	14%	45%	22%	16%	0%
¹ Sum of A/D, B/D, and C/D HSG						

2.1.5 Land Use

The 2014 National Land Cover Dataset (NLCD), as shown in Figure 15, was obtained from the USDA NRCS Geospatial Data Gateway tool. The sub-watersheds consist primarily of evergreen forest, shrub/scrub, and deciduous forest, with the primary land use in each sub-basin being the evergreen forest, as described in Table 13.

Table 13. Land Use Data Summary

Sub-Watershed	Primary	Secondary	Tertiary
	Land Use	Land Use	Land Use
Lower Dolores	Evergreen Forest	Shrub/Scrub	Deciduous Forest
	45%	29%	18%
Upper Dolores	Evergreen Forest 43%	Shrub/Scrub 27%	Deciduous Forest 21%
San Miguel	Evergreen Forest 39%	Deciduous Forest 25%	Shrub/Scrub 19%

Impervious surface data derived from the NLCD was also available from the 2013 National Atlas of the United States, and was obtained using USGS National Map Small-Scale Data Download tool. However, approximately 96 percent of the Watershed is unmapped, and therefore this dataset was not considered in this assessment.

Agriculture data was obtained from the 2017 Colorado Decision Support System (CDSS) Division of Water Resources' (DWR) web portal, as shown in Figure 16. The Watershed is not used extensively for agriculture. Crops are primarily grown on irrigated lands in the San Miguel sub-watershed, with grass pasture being the main crop grown.

2.1.6 Land Ownership

Land ownership parcel data was available from the BLM Colorado Surface Management Agency (SMA), as shown in Figure 17. The sub-watersheds consist primarily of federal land parcels managed by the BLM and the United States Forest Service (USFS), as shown in Table 14. Other land owners include: the State of Colorado, the State of Utah, private, and other.

Table 14. Land Ownership Data Summary

Cub Matarahad	Federal		State	Private	Other	
Sub-Watershed	BLM	USFS				
Lower Dolores	59%	22%	4%	15%	0%	
Upper Dolores	36%	42%	3%	18%	1%	
San Miguel ¹	27%	35%	2%	34%	2%	
¹ Other includes less than 1% BOR and NPS						

2.1.7 Precipitation

Annual average precipitation data from 1981 to 2010 was available from the PRISM Climate Group, as shown in Figure 18. The greatest amounts of average annual rainfall occurs in locations that correspond to the highest elevations (the mountain range on the southeast portion of the basin, and the high point between the Upper Dolores and Lower Dolores subwatersheds). The lowest amounts of average annual rainfall occur along the lower halves of the Upper Dolores and San Miguel Sub-Watersheds, in the vicinity of the streams, and along the streams in the Lower Dolores Sub-Watershed.

Frequency-based precipitation data is available from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 Precipitation Frequency Estimates tool (2013 for Colorado, 2011 for Utah). There is data available for events ranging from the 1-year to the 1000-year event with durations ranging from 5 minutes to 60 days. This data may be useful for future projects along the stream corridor for design and restoration projects and for compliance with Federal Emergency Management Agency (FEMA) requirements. An example frequency event (the 100-year, 24-hour [hr] data) is presented in Figure 19.

2.2 Data Sources

Table 15 presents a summary of data reviewed at the time of the watershed characterization. Additional data may be available at different sources. Additional information on each dataset is available from their individual metadata.

Table 15. Data Sources

Data Layer	Data Type	Source	Date Published	Date Acquired	Description	Report Use	Link
Sub- Watersheds	ArcGIS Shapefile	WBD; USGS National Map	12/16/2015	8/8/2019	WBDHU8 and WBDHU10 located within the Watershed	Section 2.1	https://viewer.nationalmap.gov/basic/?basemap=b1&category=nhd&title =NHD%20View#productSearch
Flowlines	ArcGIS Shapefile	NHD; USGS National Map	06/2014	8/9/2019	Colorado River, Dolores River, and San Miguel River	Section 2.1	https://nationalmap.gov/small_scale/atlasftp.html?openChapters=chpbio %2Cchpwater#chpwater
Topography	Raster	NED; USGS National Map	Varies from 2017 to 2019	8/8/2019	DEM 1/3 Arc-Second resolution.	Section 2.1.2	https://viewer.nationalmap.gov/basic/#productSearch
Geology	ArcGIS Shapefile	USGS Mineral Resources; NRCS Data Gateway	CO: 2005 UT: 2005	8/8/2019	Colorado and Utah	Section 2.1.3	https://datagateway.nrcs.usda.gov/GDGOrder.aspx
Soils	ArcGIS Shapefile	SSURGO; USDA, NRCS Web Soil Survey	CO:9/10/2018 UT: 12/16/2013, 9/21/2015	8/12/2019	Colorado and Utah	Section 2.1.4	https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
Land Use	ArcGIS Shapefile	NLCD; NRCS Data Gateway	CO: 3/31/2014 UT: 3/31/2014	8/8/2019	Colorado and Utah	Section 2.1.5	https://datagateway.nrcs.usda.gov/GDGOrder.aspx
Percent Impervious	ArcGIS Shapefile	NLCD; USGS National Map	2/20/2013	8/9/2019	Colorado and Utah	Section 2.1.5	https://nationalmap.gov/small_scale/atlasftp.html?openChapters=chpbio %2Cchpwater#chpwater
Crop Types	ArcGIS Shapefile	Colorado's Decision Support Systems (CWCB/DWR)	Division 4: 5/18/2017 Division 7: 9/20/2017	8/12/2019	Colorado: Divisions 4 and 7	Section 2.1.5	https://www.colorado.gov/pacific/cdss/gis-data
Annual Average Precipitation	Raster	PRISM Climate Group at Oregon State University	7/10/2012	9/24/2019	Average annual precipitation from 1981 to 2010.	Section 2.1.7	http://www.prism.oregonstate.edu/normals/
Frequency Precipitation	Raster	NOAA Precipitation Frequency Data Server	CO:4/15/2013 UT: 4/08/2011	9/3/2019	100-year 24 hour duration storm	Section 2.1.7	https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html
Historic Aerial Imagery	TIFF	USGS Earth Explorer	9/27/2018	8/9/2019	Not downloaded for assessment		https://earthexplorer.usgs.gov/
State Data	ArcGIS Shapefile	Colorado Department of Public Health and Environment (CDPHE)	CO Counties: 2/19/2018 CO City Boundaries: 2/19/2018	8/9/2019	Colorado County and City Boundaries		https://data- cdphe.opendata.arcgis.com/datasets/66c2642209684b90af84afcc559a5 a02_5
State Data	ArcGIS Shapefile	Data.gov	2/20/2013	8/9/2019	Colorado Roadways		https://catalog.data.gov/dataset/tiger-line-shapefile-2016-state-colorado- current-county-subdivision-state-based
State Data	ArcGIS Shapefile	Utah Automated Geographic Reference Center (AGRC)	UT Counties: 2/23/2017 UT Cities: 2/23/2017 UT Roadways: 10/26/2017	8/9/2019	Utah County Boundaries, City Boundaries, and Roadways		https://gis.utah.gov/data/
County Data ¹	ArcGIS Shapefile and Raster	Mesa County	3/08/2018	8/8/2019	Mesa County, Colorado: Drainage Basins, Rivers, Watershed Boundaries, Mesa County Boundary, and Roads		https://emap.mesacounty.us/DownloadData/
County Data ¹	ArcGIS Shapefile	Montrose County	2/26/2015	8/9/2019	Montrose County, Colorado: County Roads		https://www.montrosecounty.net/406/Downloadable-Data

Data Layer	Data Type	Source	Date Published	Date Acquired	e Acquired Description		Link
County Data ¹	ArcGIS Shapefile	San Miguel County	6/27/2016	8/9/2019	San Miguel County, Colorado: Roadways		https://www.sanmiguelcountyco.gov/185/MappingGIS
County Data ¹	ArcGIS Shapefile	Montezuma County	6/05/2009	8/9/2019	Montezuma County, Colorado: Roadways		http://montezumacounty.org/web/departments/gis-mapping/gis-download/
FEMA Data	ArcGIS Database	FEMA	6/09/2019	8/8/2019	Colorado FEMA floodplain information		https://msc.fema.gov/portal/home#
FEMA Data	ArcGIS Database	FEMA	7/28/2019	8/8/2019	Utah FEMA floodplain information		https://msc.fema.gov/portal/home#
Parcel Data	ArcGIS Shapefile	BLM	12/27/2019	1/22/2020	Utah land ownership information		https://www.blm.gov/services/geospatial/GISData/utah
Parcel Data	ArcGIS Shapefile	BLM	12/27/2019	1/22/2020	Colorado land ownership information		https://www.blm.gov/site-page/services-geospatial-gis-data-colorado
¹ Additional data available							

3 Hydrologic Assessment

3.1 Purpose

As discussed in Section 1 of this Report, the flow regime of the Dolores River has changed over the past 130 years due to western expansion and development. The first major change occurred in 1880's when the MVIC began directing water for irrigation. Another significant change in the Watershed occurred in 1983 with the construction of McPhee Dam. The purpose of this Hydrologic Assessment is to evaluate three main hydrologic components:

- 4. Evaluate the impacts McPhee Dam had on the Watershed's overall hydrologic regime. This was completed by developing IHA parameters for both pre-impact and post-impact conditions, and then comparing the change of those parameters using the Range of Variability Approach (RVA).
- Evaluate the influence the San Miguel River has on the Lower Dolores River. This was completed by reviewing and comparing flow duration curves for gages in the Lower Dolores River, Middle Dolores River, and San Miguel River.
- 6. Understand how the current hydrology impacts the form and function of the Dolores River, and how this information can be used to inform future watershed management.

This analysis evaluates hydrologic impacts pre and post McPhee Reservoir construction. However, impacts began with the MVIC diversions. Analyzing the unaltered hydrology of the system pre-1880's is outside the scope of this study.

3.2 Summary of Gage Data

There are 17 USGS gages and one State of Colorado gage available in the Watershed on the following watercourses: Dolores River, Disappointment Creek, San Miguel River, West Paradox Creek, and Colorado River. The locations of these gages are shown in Figure 20. A variety of data is available at many of these gages, including: discharge, precipitation, temperature, and other parameters. These parameters are typically available as daily averages or at specific time increments throughout the day. There are also typically daily, monthly, and yearly statistics available for each gage, as well as peak streamflow data. A summary of the available data for each of the gages can be found in Table 16. This table includes links to the specific gages, which can be used to review additional information. For the purpose of this analysis, the average daily discharge data was obtained.

Table 16. Available USGS and State Gage Information

Gage Name	Gage Number	River Name	Drainage Area (sq mi)	Date Acquired	Start Date	End Date	Available Data	Link
Dolores River Near Cisco, UT	09180000	Dolores River	4,580	8/20/2019	12/1/1950	8/19/2019	Both	https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=09180000
Dolores River Near Gateway, CO	09179450	Dolores River	4,146	8/20/2019	11/18/2014	8/19/2019	Post-Impact	https://waterdata.usgs.gov/nwis/inventory/?site_no=09179450&agency_cd=USGS
Dolores River Near Bedrock, CO	09171100	Dolores River	2,147	8/20/2019	8/1/1971	8/19/2019	Both	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09171100
Dolores River at Bedrock, CO	09169500	Dolores River	2,025	8/20/2019	10/1/1917	8/19/2019	Both	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09169500
Dolores River Near Slick Rock, CO	09168730	Dolores River	1,434	8/20/2019	5/1/1997	8/19/2019	Post-Impact	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09168730
Dolores River at Dolores, CO	09166500	Dolores River	504	8/20/2019	10/1/1895	8/19/2019	Both	https://waterdata.usgs.gov/nwis/inventory/?site_no=09166500
Dolores River Below Rico, CO	09165000	Dolores River	106	8/20/2019	10/1/1951	8/19/2019	Both	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09165000
Dolores River Near McPhee, CO	09167500	Dolores River	817	8/20/2019	10/1/1938	9/29/1952	Pre-Impact	https://waterdata.usgs.gov/nwis/inventory/?site_no=09167500
Dolores River Below McPhee Reservoir	DOLBMCCO	Dolores River	819	8/27/2019	10/11/1985	9/30/2018	Post-Impact	https://www.colorado.gov/cdss/surface-water-all-stations
San Miguel River at Uravan, CO	09177000	San Miguel River	1,500	8/20/2019	8/1/1954	8/19/2019	Both	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09177000
San Miguel River at Brooks Bridge Near Nucla, CO	09174600	San Miguel River	743	8/20/2019	3/31/1995	8/19/2019	Post-Impact	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09174600
San Miguel River Near Placerville, CO	09172500	San Miguel River	309	8/20/2019	10/1/1910	8/19/2019	Both	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09172500
South Fork San Miguel River Near Ophir, CO	09171310	San Miguel River	41.7	8/20/2019	11/1/2011	8/19/2019	Post-Impact	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09171310&agency_cd=USGS
Lake Fork San Miguel Rv Abv Trout Lake Nr Ophir, CO	09171240	San Miguel River	8.52	8/20/2019	11/1/2011	8/19/2019	Post-Impact	https://waterdata.usgs.gov/nwis/inventory/?site_no=09171240&agency_cd=USGS
West Paradox Creek Above Bedrock, CO	09170800	West Paradox Creek	53.3	8/20/2019	8/1/1971	9/29/1973	Pre-Impact	https://waterdata.usgs.gov/nwis/inventory/?site_no=09170800
Colorado River Near Cisco, UT	09180500	Colorado River	24,100	8/20/2019	10/1/1913	8/19/2019	Both	https://waterdata.usgs.gov/nwis/inventory?site_no=09180500
Disappointment Creek Near Cedar, CO	09168500	Disappointment Creek	167	8/27/2019	3/1/1953	9/29/1956	Pre-Impact	https://waterdata.usgs.gov/co/nwis/inventory/?site_no=09168500&agency_cd=USGS
Disappointment Creek Near Dove Creek, CO	09168100	Disappointment Creek	147	8/27/2019	8/1/1957	9/29/1986	Both	https://waterdata.usgs.gov/nwis/inventory/?site_no=09168100

3.3 Pre- and Post-Impact Hydrologic Analysis

3.3.1 Methodology and Software

The first component of the hydrologic assessment is to evaluate impacts McPhee Dam has had on the Watershed's overall hydrologic regime. This evaluation was completed using an IHA Analysis and RVA methodology and approach, as developed by Richter et al.:

- 1. A Method for Assessing Hydrologic Alteration within Ecosystems (Richter, et al., 1996)
- 2. A Spatial Assessment of Hydrologic Alteration within a River Network (Richter, et at., 1998)

The purpose of these analyses are to statistically characterize the temporal variability in the hydrologic regime using biologically relevant statistics, and to quantify and compare hydrologic regimes from pre-impact to post-impact. Results from this analysis can be used to provide ecosystem managers the appropriate information to restore the river system's integrity to pre-impact conditions.

TNC developed IHA software to characterize natural and altered hydrologic regimes. The IHA software can be used to summarize long periods of daily hydrologic data into manageable series of ecologically relevant hydrologic parameters. It can also be used to analyze how a flow regime has been impacted by an abrupt change. For this analysis, Version 7.1 of the IHA software was used.

3.3.1.1 IHA PARAMETERS

The IHA software uses daily hydrologic gage data to run the statistical analysis and compute a total of 33 IHA parameters. These can be organized into five groups based on hydrologic regime. These are presented in Table 17 and summarized below based on Richter et al. (1996):

- 1. <u>Magnitude of Monthly Water Conditions</u> This group measures the monthly central tendency of daily water conditions. These parameters can provide a general measure of habitat availability and suitability.
- Magnitude and Duration of Annual Extreme Water Conditions This group
 measures the magnitude of extreme annual water conditions of various durations. These
 parameters can provide measures of environmental stress and disturbance.
- Timing of Annual Extreme Water Conditions This group determines the date of the minimum and maximum water conditions. Similar to Group 2, these can also measure the seasonal nature of environmental disturbance or stress.
- Frequency and Duration of High and Low Pulses This group measures the annual frequencies and durations of high and low pulses (i.e. when a water condition exceeds an upper threshold). These parameters can provide a measure of pulsing behavior in a vear.
- 5. Rate and Frequency of Water Condition Changes This group measures the rate changes in water conditions from day to day. These parameters can provide a measure of the rate and frequency of intra-annual environmental change.

The IHA parameters can be calculated using either a parametric or a non-parametric statistical method. The parametric method assumes a normal distribution of the information, while the non-parametric method assumes non-normal distribution. For this analysis, the non-parametric method was performed because of the skewed nature of hydrologic datasets. Non-parametric analyses present the results in medians because the results are presented in terms of percentiles. Table 17 summarizes the IHA parameters calculated and explains their ecosystem influences.

Table 17. IHA Hydrologic Parameters and their Ecosystem Influences (Source: IHA User's Manual, TNC, 2009, Table 1)

IHA Parameter Group	Hydrologic Parameters	Ecosystem Influences
Magnitude of Monthly Water Conditions (Group 1)	Mean or median value for each calendar month Subtotal: 12 Parameters	 Habitat availability for aquatic organisms Soil moisture availability for plants Availability of water for terrestrial animals Availability of food/cover for fur-bearing mammals Reliability of water supplies for terrestrial animals Access by predators to nesting sites Influences water temperature, oxygen levels, photosynthesis in water column
Magnitude and Duration of Annual Extreme Water Conditions (Group 2)	Annual minima, 1-day mean Annual minima, 3-day means Annual minima, 7-day means Annual minima, 30-day means Annual minima, 90-day means Annual maxima, 1-day mean Annual maxima, 3-day means Annual maxima, 7-day means Annual maxima, 30-day means Annual maxima, 90-day means Annual maxima, 90-day means Annual maxima, 90-day means Sumber of zero-flow days Base flow index: 7-day minimum flow/mean flow for year Subtotal: 12 Parameters	 Balance of competitive, ruderal, and stress-tolerant organisms Creation of sites for plant colonization Structuring of aquatic ecosystems by abiotic vs. biotic factors Structuring of river channel morphology and physical habitat conditions Soil moisture stress in plants Dehydration in animals Anaerobic stress in plants Volume of nutrient exchanges between rivers and floodplains Duration of stressful conditions such as low oxygen and concentrated chemicals in aquatic environments Distribution of plant communities in lakes, ponds, floodplains Duration of high flows for waste disposal, aeration of spawning beds in channel sediments
Timing of Annual Extreme Water Conditions (Group 3)	Julian date of each annual 1-day maximum Julian date of each annual 1-day minimum Subtotal: 2 Parameters	 Compatibility with life cycles of organisms Predictability/avoidability of stress for organisms Access to special habitats during reproduction or to avoid predation Spawning cues for migratory fish Evolution of life history strategies, behavioral mechanisms
Frequency and Duration of High and Low Pulses	Number of low pulses within each water year	Frequency and magnitude of soil moisture stress for plants Frequency and duration of anaerobic stress for plants

(Group 4)	Mean or median duration of low pulses (days) Number of high pulses (days) Mean or median duration of high pulses (days) Subtotal: 4 Parameters	 Availability of floodplain habitats for aquatic organisms Nutrient and organic matter exchanges between river and floodplain Soil mineral availability Access for waterbirds to feeding, resting, reproduction sites Influences bedload transport, channel sediment textures, and duration of substrate disturbance (high pulses)
Rate and Frequency of Water Condition Changes (Group 5)	Rise rates: Mean or median of all positive differences between consecutive daily values. Fall rates: Mean or median of all negative differences between consecutive daily values Number of hydrologic reversals Subtotal: 3 Parameters	 Drought stress on plants (falling levels) Entrapment of organisms on islands, floodplains (rising levels) Desiccation stress on low-mobility streamedge (varial zone) organisms

3.3.1.2 RANGE OF VARIABILITY APPROACH

In order to evaluate the impact of an abrupt change in a watershed (i.e. construction of a dam), the IHA software will develop IHA parameters based on "pre-impact" and "post-impact" periods. It then applies the RVA to analyze the hydrologic change between those time periods. The RVA uses the pre-impact natural variation of IHA parameter values as a reference for defining the extent to which natural flow regimes have been altered. The pre-impact variation can also be used as a basis for defining initial environmental flow goals.

The RVA method strives to maintain the natural flow regime by keeping post-impact annual parameters within a targeted range based on pre-impact natural variability. The target range is based on selected percentile levels (based on non-parametric analysis). For this analysis, the results from the middle category (range of the 34th percentile to the 67th percentile of pre-impact results) were used as the target range.

In order to determine the degree of alteration of the IHA parameters, the RVA method will then calculate the Hydrologic Alteration (HA) based on the target range. The results from the HA analysis can be used to understand the deviance the post-impact parameters have from the target range (determined from the pre-impact parameters).

The RVA first calculates the expected frequency with which the post-impact IHA parameters fall. It then computes the frequency with which the post-impact parameters fall. The degree to which the RVA target range is not attained is measured by the HA, which is defined as:

$$Hydrologic \ Alteration = \frac{Observed - Expected}{Expected} * 100$$

"Observed" represents the count of the years that fell within the expected range, while "expected" represents the anticipated count of years that would fall within the expected range.

- When the resulting HA is equal to zero, the observed frequency of post-impact annual values falling within the RVA target range equals the expected frequency.
- A positive deviation means the annual parameter fell inside the RVA target window more often than expected
- A negative deviation means the annual parameter fell inside the RVA target window less often than expected.

In order to further interpret the HA analysis results, the HA results subdivided in terms of percentiles.

- Low (L): HA of 0 to 33 percent; represents little or no alteration
- Medium (M): HA of 34 to 67 percent; represents moderate alteration
- High (H): HA of 68 to 100; represents a high degree of alteration

It is recommended that a minimum of 20 years of data be used for both pre-impact analysis and post-impact analysis in order to adequately understand the impacts the dam had on the flow regime (TNC, 2009; Richter, et al., 1997). If there are gaps in the daily discharge data used for

the analysis, then the IHA software performs a linear interpolation over the gaps. Therefore, results produced from data with missing pieces should be interpreted with caution.

3.3.2 Gage Data Used

The discharge data used for this non-parametric analysis was broken into 2 categories: preimpact and post-impact. The year 1983 was used as the transition year. All discharge data gathered before or during 1983 is classified as pre-impact, while all data gathered from 1984 to present is classified as post-impact. There are four gages within the Watershed that meet the minimum of 20 years of pre-impact and 20 years of post-impact data required for the IHA analysis (see Section 3.3.1.2):

- 1. Dolores River Near Cisco, UT
- 2. Dolores River at Dolores, CO
- 3. Dolores River Below Rico, CO
- 4. San Miguel River Near Placerville, CO

A summary of the data available for all the gages is shown in Table 18 and Plot 1. As seen in Table 18, both the Dolores River at Dolores, CO and San Miguel River near Placerville, CO had large gaps of missing data. Most of these gaps were from short segments of data before the 1940's. The IHA software automatically interpolates over gaps in data, and recommends that users should use caution with these results. In order to avoid this caution and create a more continuous dataset, these short segments were removed to create a generally continuous dataset. The resulting period of record used in the analysis can be seen in Table 18.

The 2005 DRD Draft Hydrology Report also reviewed the Dolores River at Bedrock, CO gage. This gage did not meet the minimum of 20 years of pre-impact requirement and includes a large data gap (between 1922 and 1971). However, in order to be consistent with previous work completed and to gain a better understanding of the impacts the McPhee Reservoir had on the Dolores River, this gage was included in the analysis. *The results of this gage analysis are interpreted with the understanding that the data availability was insufficient.* Each of these five gages are presented in Figure 21.

Table 18. Modified Gage Data

Gage	Original Period of Record	Years of Missing Data	Period of Record Used in Analysis	
Dolores River Near Cisco, UT	12/1/1950-8/19/2019	No Missing Data	12/1/1950-8/19/2019	
Dolores River at Dolores, CO	10/1/1895-8/19/2019	1903-1910 and 1912-1921	10/1/1921-8/19/2019	
Dolores River Below Rico, CO	10/1/1951-8/19/2019 No Missing Data		10/1/1951-8/19/2019	
San Miguel River Near Placerville, CO	10/1/1910-8/19/2019	1912-1930 and 1934-1942	4/1/1942-8/19/2019	
Dolores River at Bedrock, CO	10/1/1917-8/19/2019	1922-1971	10/1/1917-9/29/1922 and 8/1/1971-10/21/2019	

Plot 1. Modified Gage Data

3.3.3 Results and Discussion

The purpose of this analysis is to assess the degree of alteration the Watershed has experienced due to the construction of McPhee Dam and Reservoir in 1984. The Watershed was broken into four stream segments based on stream gage locations for this assessment, as described in Table 19.

Table 19. Stream Segmentation for IHA Analysis

Stream Segment	Gage	Influenced by McPhee Reservoir?	Description
Upper Dolores River	Dolores River below Rico, CO; Dolores River at Dolores, CO	No	Dolores River upstream of McPhee Reservoir
Middle Dolores River	Dolores River at Bedrock, CO	Yes	Dolores River downstream of McPhee Reservoir and upstream of the confluence with the San Miguel River
Lower Dolores River	Dolores River at Cisco, UT	Yes	Dolores River downstream of the confluence with the San Miguel River
San Miguel River	San Miguel River near Placerville, CO	No	San Miguel River

Of the five gages used in the analysis, only two are influenced by McPhee Reservoir, as shown by circles on Figure 21. However, climatic differences between the pre- and post-impact time periods can affect the IHA analysis (Richter, et al., 1996). In order to assess whether the Watershed has experienced other influences, such as climatic changes, the other three gages (uninfluenced by the McPhee Reservoir) were also analyzed. These are shown by squares on Figure 21.

The IHA and RVA analyses results for each gage are presented in Appendix A. The following sections describe: the general watershed alterations, observations of uninfluenced stream segments, and observations of influenced stream segments.

As discussed in Section 1.4, the DRD 2005 Core Science Report conducted an IHA analysis and presented results as the percent difference between pre- and post-impact parameters. This approach was not used for this Report. Instead, the RVA method approach was used because it allows for a different perspective on the results.

3.3.3.1 GENERAL WATERSHED ALTERATIONS

To gain a general understanding of overall changes in Watershed flows, flow statistics were compared for both the pre-impact and post-impact periods at each gage. These statistics include: average (represented in yellow dots in the following plots) and the first quartile, median, and third quartile (represented as blue boxes in the following plots). Daily average data for all gages can be found in Appendix A.

The uninfluenced Upper Dolores River gages are presented in Plot 2 and Plot 3. Both gages experienced an increase in median and interquartile flows despite a general decrease in average flows. However, the changes appear to be small, suggesting miminal general changes in flows.

The influenced gages on both the Middle and Lower Dolores River (Plot 4 and Plot 5) saw similar trends to those on the uninfluenced Upper Dolores River. However, the changes in flow are greater, suggesting these stream segments have experienced greater change.

The uninfluenced San Miguel River (Plot 6) experiences a slight increase in both the average and interquartile range, however the increase appears to be minimal suggusting little to no change in general flow trends. This stream segment was the only case where the average flows for both periods were within the interquartile range. This suggests the presence of large outliers in the datasets of the other segments.

Plot 2. Flow Statistics for Dolores River Below Rico, CO.

Plot 3. Flow Statistics for Dolores River at Dolores, CO.

Plot 4. Flow Statistics for Dolores River at Bedrock, CO.

Plot 5. Flow Statistics for Dolores River near Cisco, UT.

Plot 6. Flow Statistics for San Miguel River near Placerville, CO.

To further understand the Watershed-wide alterations, the middle category HA's were reviewed. First, the HA for each IHA parameter was classified as low (L), medium (M), or high (H) based on the following criteria (and as described in Section 3.3.1.2):

- Low (L): HA of 0 to 33 percent; represents little or no alteration
- Medium (M): HA of 34 to 67 percent; represents moderate alteration
- High (H): HA of 68 to 100; represents a high degree of alteration

This classification was completed for each of the 33 IHA parameters calculated. Then the total number of low, medium, and high parameters were determined, along with the percentage based on the total parameters. An example includes: the San Miguel River near Placerville, CO gage has 19 parameters that are classified as low alteration. When that value is divided by the total number of parameters (33), the resulting percentage is 57.6.

The results are presented in Table 20. The uninfluenced gages all have a majority of low HA's. The Lower Dolores River also has a majority of low HA's, and more low HA's than the San Miguel River. This again demonstrates the influence the San Miguel River has over the Dolores River. The Middle Dolores River majority is composed of both medium and high HA's, demonstrating the potential impact of McPhee Reservoir on this stream segment.

Additionally, the average absolute value of all HA's calculated for the 33 IHA parameters for each gage was determined. As expected based on percentages, the uninfluenced stream segments and the Lower Dolores River had low HA's, with the Lower Dolores River having the highest average of 0.3 in this grouping. The Middle Dolores River had an average HA of 0.49. which is classified as medium. This is expected based on the range of HA's that resulted at the Dolores River at Bedrock, CO gage.

Table 20. Summary of Low, Medium, and High HA Percentages and HA Average

Gage	Stream Segment	Perce	Percentage of Total HA's					
Gaye	Stream Seyment	Low	Medium	High	HA ¹			
Dolores River Below Rico, CO	Uninfluenced Upper Dolores River	72.7	27.3	0.0	0.25			
Dolores River at Dolores, CO	Uninfluenced Upper Dolores River	69.7	27.3	3.0	0.27			
Dolores River at Bedrock, CO ²	Influenced Middle Dolores River	48.5	18.2	33.3	0.49			
Dolores River Near Cisco, UT	Influenced Lower Dolores River	60.6	27.3	12.1	0.30			
San Miguel River Near Placerville, CO	Uninfluenced San Miguel River	57.6	39.4	3.0	0.29			
¹ Average of the absorption	¹ Average of the absolute value of HA							

UNINFLUENCED GAGE SUMMARY 3.3.3.2

As seen in Table 20, the average HA of the uninfluenced gages is low (and therefore not within the target range). Because the HA's for these stream segments are not altered by significant

² The sum of the medium and high HA's is 51.5%

storage and diversion projects, then other factors are responsible. Recent climate studies by the State of Colorado have shown projections for decreases in annual streamflow by 2050 for the San Juan and Rio Grande basins (CWCB, 2014), suggesting climate change could be playing a role in alterations to the Watershed. This is further suspected as all gages saw decreases of medium alterations in their minimum stream flows (1-day minimum stream flow, 30-day minimum streamflow, and 90-day minimum streamflow). Other Watershed impacts may include: changes in upper-Watershed water resources operations, fire suppression activities, forest fires, etc. These potential impacts have not been addressed in this assessment, but should be considered for future studies to better understand overall Watershed changes.

3.3.3.3 INFLUENCED GAGE SUMMARY

The HA was calculated for all 33 IHA parameters. The resulting HA values were ranked in descending order, with the highest degree of alteration being ranked first. The top ten ranked parameters based on the *Dolores River at Bedrock, CO* gage are presented in Table 21. The *Dolores River at Bedrock, CO* gage sees the highest alterations with decreases in minimum flow parameters, including the base flow index. The *Dolores River near Cisco, UT* gage sees this same trend. The *Dolores River at Bedrock, CO* gage also sees high alterations through decreases in low pulse count and duration, along with high alterations in some monthly flows (both increases and decreases). Plots of each of these parameters, including the pre-impact time series, post-impact time series, and RVA limits, are presented in Appendix C. A summary of alterations per parameter group is presented in Table 22.

Table 21. Top Ten Ranked Parameters based on Dolores River at Bedrock, CO Gage

IHA Parameter	Dolores River at Bedrock, CO	Dolores River Near Cisco, UT
December (cfs)	1.11 (H)	0.17 (L) ¹
July (cfs)	1.43 (H)	-0.25 (L) ¹
August (cfs)	-1.00 (H)	-0.33 (M) ¹
1-Day Min (cfs)	-0.86 (H)	-0.92 (H)
3-Day Min (cfs)	-0.92 (H)	-0.92 (H)
7-Day Min (cfs)	-0.92 (H)	-0.83 (H)
30-Day Min (cfs)	-0.84 (H)	-0.17 (L) ¹
Base Flow Index ²	-1.00 (H)	-0.67 (M)
Low Pulse Count	-0.86 (H)	-0.08 (L) ¹
Low Pulse Duration (days)	-0.86 (H)	-0.28 (L) ¹

¹ Not top ten ranked for *Dolores River near Cisco*, *UT* gage

Note: Blue indicates an increase between pre-impact and post-impact. Red indicates a decrease between pre-impact and post-impact.

² Base flow index is the 7-day minimum divided by the annual mean flow

Table 22. Summary of Alternations by Parameter Group

IHA Parameter Group	Dolores River at Bedrock, CO	Dolores River Near Cisco, UT			
Magnitude of Monthly Water Conditions (Group 1)	There is a mix of low to high alterations, with both increases and decreases from expected ranges. The following months have high alterations: July (+), August (-), September (-1), and December (+). With the exception of February having medium alternation (+), the remaining months have low alterations.	This parameter group primarily sees low alternations, with the exception of November and August. These lower alterations suggest the San Miguel River has an important influence over the Lower Dolores River.			
Magnitude and Duration of Annual Extreme Water Conditions (Group 2)	There are high alterations in minimum daily flows, including the base flow index. All high alternations are decreases from the expected range (-). All other parameters have low alternations, and are primarily increases from the expected range (+).	Similar to the Bedrock gage, there are high alterations in minimum flow days, all resulting in decreases (-). All other parameters are primarily low alternation decreases (-).			
Timing of Annual Extreme Water Conditions (Group 3)	Both gages show a decreased medium alteration.				
Frequency and Duration of High and Low Pulses (Group 4)	The low pulse count and duration have high alterations with decreases from expected ranges (-). The remaining parameters have medium alterations with decreases from expected ranges (-).	This parameter group has low and medium alterations with decreases from expected ranges (-).			
Rate and Frequency of Water Condition Changes (Group 5)	This parameter group has low and medium alterations, with both increases (+) and decreases (-) from the expected range.	This parameter group has medium and high alternations, all being decreases from the expected range (-).			

3.4 San Miguel River's Influence over Lower Dolores River

As discussed in Section 1.4, the following statement was made about the influence of the San Miguel River over the Lower Dolores River: "average annual discharge of the Dolores River declined from 504 cfs (as measured at Bedrock, CO) to about 240 cfs after dam construction in 1984....The lowermost reaches of the Dolores River receive considerable flow input...from the San Miguel River on a year-round basis..." (BOR, 2018).

While this is a reasonable conclusion, it is limiting because it is based on the one metric of average annual discharge. In order to gain a greater understanding of how the San Miguel River influences the Lower Dolores River, the percent contribution of San Miguel River flows at the confluence of the San Miguel River and the Middle Dolores River ("Confluence") was evaluated.

3.4.1 Methodology

Three components were evaluated for this analysis:

- 1. The change in the percent contribution of San Miguel River flows at the Confluence preimpact and post-impact.
- 2. The change in the percent contribution of San Miguel River flows at the Confluence preimpact and post-impact relative to flows on the Middle Dolores River.
- 3. The change in the percent contribution of San Miguel River flows at the Confluence preimpact and post-impact relative to flows on the San Miguel River.

Two gages were used in this evaluation to represent different stream segments in the Watershed, as presented in Table 23 and Figure 22. Both gages had average daily discharge data from October 1, 1973 to present. The percent contribution of the San Miguel River at the Confluence was calculated based on a daily time step, as follows:

Confluence = San Miguel River Flows + Middle Dolores River Flows

Percentage of San Miguel River Flows =
$$\frac{\text{San Miguel River Flows}}{\text{Confluence}} \times 100$$

Table 23. Gages used for Evaluation of the San Miguel River's Influence over Lower Dolores River

Gage	Stream Segment				
Dolores River at Bedrock, CO ¹	Influenced Middle Dolores River				
San Miguel River at Uravan, CO ¹	Uninfluenced San Miguel River				
¹ Did not meet the minimum of 20 years of pre-impact	data requirement				

The first component reviewed was a comparison of the percent contribution of San Miguel River flows at the Confluence. This was completed for both time periods as follows:

- 1. The percent contribution of the San Miguel River at the Confluence was ranked from smallest to lowest.
- 2. The minimum, 25th percentile, 50th percentile, 75th percentile, and maximum percentages were found and plotted as a box-and-whisker.

The second component reviewed was a comparison of the percent contribution of San Miguel River flows at the Confluence relative to flows at the Dolores River at Bedrock gage. This was completed for both time periods as follows:

- 1. The time series of flow at the Dolores River at Bedrock gage was sorted from highest to lowest and given an associated ranked position number.
- 2. The exceedance probability for each Dolores River at Bedrock gage event was determined using the following equation:

Exceedance Probability =
$$\frac{\text{Ranked Position}}{\text{Total Number of Events in Period of Record} + 1} \times 100$$

- 3. The Dolores River at Bedrock gage times series was then divided into three categories based on the exceedance probabilities calculated in Step 2:
 - a. Top 25 percent (representative of high flows)
 - b. Middle 50 percent (representative of medium flows)
 - c. Bottom 25 percent (representative of low flows)
- 4. For each of the categories in Step 3, the percent contribution of San Miguel River flows at the Confluence was determined. The associated minimum, 25th percentile, 50th percentile, 75th percentile, and maximum percentages were then determined and plotted utilizing a box-and-whisker plot.

The third component reviewed was a comparison of the percent contribution of San Miguel River flows at the Confluence as they relate to flows at the San Miguel River at Uravan gage. The process was the same as the second component, with the exception that the times series of flow for the San Miguel River at Uravan gage was sorted from highest to lowest (Step 1).

3.4.2 Results and Discussion

The results of the first component are presented in Plot 7. It can be seen that the interquartile range (difference between the third and first quartile) for pre-impact is 54 to 89 percent (a range of 35 percent), while the post-impact is 56 to 75 percent (a range of 20 percent). The median for pre-impact (71 percent) is greater than the median for post-impact (67 percent). These results suggest that influence of the San Miguel River at the confluence has generally **decreased** since the construction of McPhee Dam. This is somewhat counterintuitive to what was expected, when compared to the time series averages at the Dolores River at Bedrock gage: 470 cfs pre-impact vs 235.9 cfs post-impact, a 50 percent decrease¹. Therefore, the influence of the San Miguel River during different flow conditions was also evaluated.

Plot 7. Influence of the San Miguel River at the Confluence, Pre-Impact vs Post-Impact

The results of the second component are presented in Plot 8. The following trends are observed:

- 1. During Middle Dolores River high flows, the San Miguel River has a greater influence during the post-impact time period.
- During Middle Dolores River medium flows, the influence of the San Miguel River is similar between both time periods. However, the pre-impact period has a slightly greater influence than post-impact.

1670 BroadwaySuite 3400Denver, CO 80202-4824 (303) 764-1520

¹ The time series average values are different than those reported by BOR (2018).

3. During Middle Dolores River low flows, the San Miguel River has a greater influence during the pre-impact time period.

Observation 1 may suggest that McPhee Dam is controlling the release of higher flow events on the Middle Dolores River.

Observations 2 and 3 may suggest that the Middle Dolores River is being controlled by releases from McPhee Dam, whereas flows may have been lower or zero during similar conditions pre-impact.

Plot 8. Influence of the San Miguel River at the Confluence in relation to the Dolores River at Bedrock gage, Pre-Impact vs Post-Impact

The results of the third component are presented in Plot 9, and have similar observations to those in the second component. Overall, it appears McPhee Reservoir is potentially (1) controlling the release of historically large flow events, and (2) providing a more constant and higher release of lower flows than historically experienced. This is consistent with the conclusion of the 2005 DRD report which states: "...McPhee Dam increased the depletion of the annual flows from 30% to 69% of natural flow...Construction of the McPhee Dam in 1984 affected the flow regime of the Dolores River by altering the spring peak flows and the magnitude and variability of the base flow. Between 1986 and 2004, the spring peak was essentially eliminated downstream from the dam for six of the 19 years of record. In an average runoff year, both the magnitude and duration of the spring peak flows are decreased. Correlation of the peak flows above and below the dam show a distinct decrease in the peak flows below the dam."

Plot 9. Influence of the San Miguel River at the Confluence in relation to the San Miguel River at Uravan gage, Pre-Impact vs Post-Impact

3.5 Dolores River Form and Function

3.5.1 Channel Forming Discharge

The channel forming discharge for the Lower and Middle Dolores River segments for the preand post-impact time periods was evaluated by comparing annual exceedance probabilities (AEP) developed using USACE Hydrologic Engineering Center's Statistical Software Package (HEC-SSP) Version 2.1. The Expected Moments Algorithm (EMA) (Bulletin 17c) method was applied using a station skew. The channel forming discharge is assumed to be a two-year (50 percent AEP) for this level of analysis.

The channel forming discharge at both gages decreased from the pre-impact period to the post-impact period. Results show the Middle Dolores River (49 percent decrease) having a greater decrease than the Lower Dolores River (28 percent decrease). This is again likely attributed to the impact of the San Miguel River on the Lower Dolores River flow regime. A summary of the data used and results for this analysis is presented in Table 24, and the full results are available in Appendix D.

Table 24. Data and Results for Channeling Forming Discharge Comparison

Gage	Stream Segment	Pre-Impact Data	Post-Impact Data	Pre-Impact 2-Year Flow (cfs)	Post-Impact 2-Year Flow (cfs)	Percent Difference ²		
Dolores River at Bedrock, CO	Influenced Middle Dolores River	1918-1921¹ 1971-1983	1984-2018	4387 (3262, 5822)	2249 (1822, 2771)	49% (decrease)		
Dolores River Near Cisco, UT	Influenced Lower Dolores River	1951-1983	1984-2018	5530 (4511, 6793)	1000 (3241, 4933)	28% (decrease)		
¹ The 1918-1921 data was input into HEC-SSP as 1967-1970 to allow for a continuous dataset ² [Post – Pre] / [Pre] x 100								

3.5.2 Baseflow Probabilities

Speas (2018) recommended the optimum annual baseflow for fisheries improvements was 150 to 300 cfs. However, it was recognized that these flows were not likely achievable, and Speas (2018) recommended the following seasonal ranges:

Spring: 50 cfs

Summer: 60 to 120 cfs

Fall: 40 to 60 cfs Winter: 25 to 35 cfs

The IHA software provides flow duration curves (see Appendix E) both on an annual and monthly basis. Exceedance probabilities associated with both the annual and monthly flow duration curves for the Dolores River at Bedrock, CO and Dolores River Near Cisco, UT gages were found and are presented in Table 25 and Table 26, respectively.

Overall, the baseflow recommendations for the Lower Dolores River will likely be easier to obtain than the Middle Dolores River due the exceedance probabilities being higher for the same flows.

Table 25. Recommended Baseflows (Speas, 2018) and Associated Post-Impact Exceedance Probabilities based on Annual Flow Duration Curve for Dolores River at Bedrock, CO Gage

Season (Months)	Recommended Baseflow (cfs)	Exceedance Probability (%) based on Annual Flow Duration Curve	Exceedance Probability (%) based on Monthly Flow Duration Curves
Spring (March, April, and May)	50	64	77-85
Summer (June, July, August)	60-120	24-50	20-68
Fall (September, October, November)	40-60	50-77	25-74
Winter (December, January, February)	25-35	85-94	72-98
Optimal	150-300	14-20	N/A

Table 26. Recommended Baseflows (Speas, 2018) and Associated Post-Impact Exceedance Probabilities based on Annual Flow Duration Curve for *Dolores River Near Cisco*, *UT* Gage

Season (Months)	Recommended Baseflow (cfs)	Exceedance Probability (%) based on Annual Flow Duration Curve	Exceedance Probability (%) based on Monthly Flow Duration Curves	
Spring (March, April, and May)	50	98	Does not extend full range of data	
Summer (June, July, August)	60-120	86-98	77-98	
Fall (September, October, November)	40-60	98-99	96-100	
Winter (December, January, February)	25-35	99	Does not extend full range of data	
Optimal	150-300	39-75	N/A	

3.5.3 Pre-Impact Hydrologic Parameter Goals

As discussed in previous sections, the RVA uses the pre-impact natural variation of IHA parameter values as a reference for defining the extent to which natural flow regimes have been altered. The pre-impact variation can also be used by ecosystem managers as a basis for defining initial environmental flow goals. The pre-impact RVA variations are presented in Table 27.

Table 27. Pre-Impact RVA Variations

hdrinc.com

Parameter	Dolores River a	at Bedrock, CO <i>High</i>	Dolores River Near Cisco, UT Low High					
Magnitude of Monthly Water Co	onditions (Group	1)						
October	8.3	38.0	102.0	173.6				
November	10.9	38.4	118.9	156.1				
December	26.9	57.3	112.2	159.3				
January	37.1	70.0	126.9	174.7				
February	41.1	81.0	162.6	192.9				
March	62.0	158.8	180.0	270.6				
April	268.4	1,169.0	680.8	1,460.0				
Мау	973.1	3,140.0	1,558.0	3,534.0				
June	444.5	2,321.0	926.0	2,159.0				
July	19.1	167.2	199.5	486.2				
August	8.9	23.7	111.2	228.1				
September	7.3	21.5	64.3	142.0				
Magnitude and Duration of Annual Extreme Water Conditions (Group 2)								
1-day minimum	0.5	5.6	30.2	44.6				
3-day minimum	0.9	5.6	31.6	48.3				
7-day minimum	1.4	5.7	33.8	52.9				

Davamatar	Dolores River a	at Bedrock, CO	Dolores River Near Cisco, UT		
Parameter	Low	High	Low	High	
30-day minimum	4.6	17.6	62.7	93.5	
90-day minimum	15.3	42.3	107.8	133.1	
1-day maximum	1,571.0	5,026.0	2,863.0	5,980.0	
3-day maximum	1,556.0	4,741.0	2,777.0	5,861.0	
7-day maximum	1,416.0	3,993.0	2,484.0	5,273.0	
30-day maximum	1,100.0	3,338.0	1,922.0	4,015.0	
90-day maximum	745.6	2,343.0	1,227.0	2,654.0	
Number of zero days	-	-	-	-	
Base flow index	0.0	0.0	0.1	0.1	
Timing of Annual Extreme Wat	er Conditions (G	roup 3)			
Date of minimum	226.5	271.0	248.7	275.0	
Date of maximum	118.1	137.4	118.0	139.8	
Frequency and Duration of Hig	h and Low Pulse	s (Group 4)			
Low pulse count	2.3	5.0	4.0	8.8	
Low pulse duration	4.9	10.2	4.0	10.1	
High pulse count	3.3	5.0	3.0	4.0	
High pulse duration	2.6	5.7	4.2	11.0	
Rate and Frequency of Water C	Condition Change	es (Group 5)			
Rise rate	9.6	27.4	20.2	32.5	
Fall rate	-24.4	-6.0	-24.5	-16.6	
Number of reversals	74.0	111.8	93.0	104.8	

4 River Geomorphic Assessment – *later phase*

5 Ecologic Analysis – *later phase*

6 Next Steps

7 References

2014, Lower Dolores River Implementation, Monitoring and Evaluation Plan for Native Fish.

Ake, Jon; Mahrer, Kenneth; O'Connell, Daniel; Block, Lisa, 2010, "What's Shaking in Bedrock? The Paradox Valley Deep-Well Injection Program" Rocky Mountain Association of Geologists.

Bestgen, K.R., Miller, W.J., and P. Budy, 2011, Status and Trends of Flannelmouth Sucker Catostomus latipinnis, Bluehead Sucker Catostomus discobolus, and Roundtail Chub Gila robusta, in the Dolores River, Colroado, and Opportunities for Population Improvement: Phase II Report.

Bureau of Land Management, Dolores River, Colorado: The River of Sorrows, Recommendation for Inclusion Under Section 5(d) of the Wild and Scenic Rivers Act.

Bureau of Reclamation, Department of the Interior, 1977, Dolores Project Colorado: Final Environmental Statement.

Coble, A.P. and Kolb, T.E., 2013, Native Riparian Tree Establishment Along the Regulated Dolores River, Colorado: Western North American Naturalist, 73, pp. 41-53.

Coble, A.P., Kolb, T.E., 2012, Riparian Tree Growth Response to Drought and Altered Streamflow along the Dolores River, Colorado: The Society of American Foresters, pp. 205-211.

Colorado Department of Natural Resources, 1976, Dolores River Wild and Scenic Study Repott

Colorado Parks and Wildlife, The Nature Conservancy, and Colorado Mesa Univeristy, 2018, Lower Dolores River 2017 McPhee Reservoir Manages Release Ecological Monitoring and Evaluation, Volumes 1 and 2.

Colorado Water Conservation Board, 2014, Climate Change in Colorado: A Synthesis to Support Water Resouces Management and Adapation.

https://wwa.colorado.edu/climate/co2014report/Climate_Change_CO_Report_2014_FINAL. pdf>.

Department of the Interior: Fish and Wildlife Service, 1980, Memorandum: Biological Opinion for Dolores Project, Colorado.

Dolores Watershed Plan Appendix 2: History of Dolores River Water Use, the Dolores Project, the Rise of Environmental Consciousness Nationally and Locally, and Stakeholder Collaboration to Promote Conservation of Lower Dolores River Natural Resources.

Dott, C.E., Gianniny, G.L., Clutter, M.J., and Aanes C., 2016, Temporal and Spatial Variation in Riparian Vegetation and Floodplain Aquifers on the Regulated Dolores River, Southwest Colorado, USA: River Research and Applications, 32, p. 2056-2070.

Dolores River Dialogue, 2005, Hydrology Report.

Dolores River Dialogue, 2006, DRAFT Correlation Report: Summary of Hydrologic and Scientific Findings And Resulting Matrix Templates.

Dolores River Dialogue, Core Science Report, 2005.

Dunmire, C., Oliver, A., Wanner, C., Preston, M., Siscoe, J., Graf, D., Anderson, C., Carver, R., and Porter-Norton, M., 2010, The Dolores River Dialogue as an Example of Long-term Collaborative Decision-making.

Fey, N., Stafford, E., and Wynne, K., 2014, Defining Recreational Streamflow Needs in the Lower Dolores River: Integrating Specific and Overall Evaluations of Flow and Recreation Quality, American Whitewater.

Kendrick, D.G., Smith, A.D., Dishman, L., and Gerhold, M., 1981, River of Sorrows: The History of the Lower Dolores River Valley.

National Park Service, 2018, Defining the Southwest: The Colorado Plateau. https://www.nps.gov/articles/the-colorado-plateau.htm.

Porter, J., 2001, Transbasin Water Transfer Dolores River Southwestern Colorado.

Richter, B.D., Baumgartner, J.V., Braun, D.P., and Powell, J., 1998, A Spatial Assessment of Hydrologic Alteration within a River Network

Richter, B.D., Baumgartner, J.V., Powell, J., and Braun, D.P., 1996, A Method for Assessing Hydrologic Alteration within Ecosystems

Richter, B.D., Baumgartner, J.V., Wigington, R., and Braun, D.P., 1997, How much water does a river need?

Rig to Flip, 2015, The River of Sorrow (film).

Shope, C.L., and Gerner, S.J., 2014, Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah: U.S. Geological Survey Scientific Investigations Report 2014-5031.

Speas, D., 2018, Flow Management and Endangered Fish in the Dolores River during 2012-2017: U.S. Bureau of Reclamation.

The Nature Conservancy, 2009, Indicators of Hydrologic Alteration, Version 7.1, User's Manual.

https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/IndicatorsofHydrologicAlteration/Documents/IHAV7.pdf.

Trout Unlimited and Mountain Studies Institute, 2017, Climate Change and the Upper Dolores Watershed: A Coldwater-fisheries Adaptive Management Framework.

United States Bureau of Reclamation, 2000, Operating Agreement, McPhee Dam and Resevoir

United States Department of Agriculture, Natural Resource Conservation Service, 2007, Part 630 Hydrology National Engineering Handbook: Chapter 7 Hydrologic Soil Groups.

United States Geological Survey, 2011, Dolores River. Geographic Names Information System.

Vandas, S., 1990, Dolore River Instream Flow Assessment, Project Report.

Voggesser, G., 2001, The Dolores Project.

White, M.S., Tavernia, B.G., Shafroth, P.B., Chapman, T.B., and Sanderson, J.S., 2018, Vegetative and geomorphic complexity at tributary junctions on the Colorado and Dolores Rivers: a blueprint for riparian restoration: Landscape Ecol.

Appendix A

IHA and RVA Results

Non-Parametric IHA Scorecard

${\sf DoloresRiverAtBedrock_GapsMaintained}$

Pre-impact period: 1918-1983 (18 years)		Post-impact period: 1984-2020 (37 years)
NormalizationFactor	1	1
Mean annual flow	470	235.9
Non-Normalized Mean Flow	470	235.9
Annual C. V.	2.21	2.27
Flow predictability	0.4	0.43
Constancy/predictability	0.38	0.69
% of floods in 60d period	0.39	0.39
Flood-free season	62	22

	MEDIANS Pre Post	COE Pre	FF. of DISP.	DEVI Medi	IATION FACTOR	SIGN Medi	IIFICANCE COUNT ans C.D.	
Parameter Group #1 October November December	11.5 21.5 40	48.1 42.3 41	6.626 3.315 1.088	0.6081 0.484 0.4732	3.183 0.9674 0.025	0.9082 0.854 0.5649	0.00 0.00 0.7247	0.05305 0.09009 0.1702
January	51.5	43.5	0.7039	0.6713	0.1553	0.04634	0.4444	0.8689
February	63	48.65	0.8552	0.6418	0.2278	0.2495	0.1872	0.5626
March April	100 925.8	70 181	1.388 1.128	1.629 5.398	0.3 0.8045	0.1743 3.786	0.5786 0.3644	0.6667 0.03203
May	2050	307	1.322	3.895	0.8502	1.947	0.1932	0.03203
June	1478	133	1.662	5.525	0.91	2.324	0.2322	0.05706
July August	87.5 13.5	63 67.2	3.486 2.38	0.904 0.4702	0.28 3.978	0.7407 0.8024	0.3353 0.00	0.1051 0.05906
September	10.1	53.9	1.677	0.5227	4.337	0.6883	0.00	0.08509
Parameter Group #2								
1-day minimum	3.9 4	25	1.554	0.564	5.41	0.637	0.00	0.1411
3-day minimum 7-day minimum	4.35	26.67 28.49	1.513 1.788	0.49 0.51	5.667 5.548	0.6762 0.7147	0.00 0.00	0.1231 0.08609
30-day minimum	6.687	35.09	2.944	0.4621	4.247	0.843	0.00	0.0991
90-day minimum	21.78	41.38	2.639	0.412	0.8994	0.8438	0.00	0.06106
1-day maximum 3-day maximum	3420 3337	1380 1250	1.452 1.329	1.839 2.162	0.5965 0.6254	0.2664 0.6274	0.1532 0.1401	0.5415 0.2052
7-day maximum	2986	1131	1.434	2.225	0.6211	0.5518	0.1622	0.3063
30-day maximum	2201	795	1.572	2.307	0.6388	0.4674	0.1351	0.3393
90-day maximum Number of zero days	1766 0	401.8 0	1.326 0	2.876 0	0.7725	1.168	0.2212	0.1542
Base flow index	0.01039	0.1733	1.321	1.181	15.69	0.1064	0.00	0.8008
Parameter Group #3	246	200	0.1463	0.3503	0.1257	1 450	0.08609	0.00007
Date of minimum Date of maximum	246 125	269 147	0.1462 0.06421	0.3593 0.2773	0.1257 0.1202	1.458 3.319	0.008008	0.06807 0.03604
Parameter Group #4 Low pulse count	4	0	1.125	0	1	1	0.00	0.00
Low pulse duration	7	6	1.464	1.333	0.1429	0.08943	0.8669	0.8959
High pulse count	4	4	0.625	1	0	0.6	0.3113	0.0951
High pulse duration Low Pulse Threshold	4 14	2	1.156	4.75	0.5	3.108	0.07608	0.01101
High Pulse Threshold	245.5							
Parameter Group #5 Rise rate	16.25	3.85	2.106	2.078	0.7631	0.0134	0.09009	0.971
Fall rate	-11.75	-4.05	-2.191	-1.407	0.6553	0.3578	0.01301	0.4254
Number of reversals	103	110	0.4515	0.2045	0.06796	0.5469	0.2863	0.2052
EFC Low flows October Low Flow	12	47.95	6.463	0.61	2.996	0.9056	0.00	0.05205
November Low Flow	22.5	42.3	3.184	0.484	0.88	0.848	0.00	0.09109
December Low Flow January Low Flow	42 55	41 43.5	1.048 0.6636	0.4732 0.6713	0.02381 0.2091	0.5483 0.01149	0.7638 0.1982	0.1682 0.974
February Low Flow	65	48.65	0.8423	0.6418	0.2515	0.01149	0.1441	0.6196
March Low Flow	100	64.25	1.125	1.001	0.3575	0.1104	0.2362	0.7668
April Low Flow May Low Flow	149.5 27	104.3 78.1	0.6647 3.163	1.005 1.008	0.3027 1.893	0.5114 0.6814	0.3163 0.01001	0.2743 0.1401
June Low Flow	80	73	1.827	0.8252	0.0875	0.5482	0.7708	0.1592
July Low Flow	42	63	2.095	0.6845	0.5	0.6733	0.006006	0.08509
August Low Flow September Low Flow	16 14	67.15 53.5	3.319 1.168	0.3872 0.4986	3.197 2.821	0.8833 0.5731	0.00 0.00	0.07307 0.1181
EFC Parameters								
Extreme low peak	2.2	1.33	1.489	2.249	0.3955	0.5108	0.5906	0.4494
Extreme low duration	8	11	1.813	3.182	0.375	0.7555	0.6206	0.2693
Extreme low timing Extreme low freq.	215 0.5	211 0	0.1195 6	0.1325 0	0.02186 1	0.1086 1	0.8498 0.00	0.8018 0.00
High flow peak	392	417	0.8954	0.5204	0.06378	0.4188	0.6887	0.7277
High flow duration	2.5	2 190	0.9 0.3531	2.25 0.3538	0.2 0.0847	1.5 0.001934	0.4144	0.01702 0.993
High flow timing High flow frequency	205.5 4	4	0.3331	0.5556	0.0647	0.3333	0.3393 0.5305	0.3834
High flow rise rate	144	158.5	1.158	0.7232	0.1009	0.3756	0.7337	0.3544
High flow fall rate Small Flood peak	-131 5670	-120 3860	-0.673 0.6989	-0.8118 0.2345	0.08397 0.3192	0.2062 0.6645	0.6547 0.06507	0.5526 0.2913
Small Flood duration	98.5	93	0.1929	0.2849	0.05584	0.4772	0.3053	0.2313
Small Flood timing	117	128	0.04235	0.05328	0.06011	0.2581	0.1351	0.5435
Small Flood freq. Small Flood riserate	0 177.8	0 77.36	0 2.474	0 0.452	0.565	0.8173	0.1722	0.3574
Small Flood fallrate	-73.5	-85.69	-0.424	-0.5136	0.1659	0.2112	0.2122	0.7678
Large flood peak	8150							
Large flood duration Large flood timing	121 121							
Large flood freq.	0	0	0	0				
Large flood riserate Large flood fallrate	184.2 -100.7							
EFC low flow threshold:	100.7							
EFC high flow threshold:		245.5						
EFC extreme low flow threshold		4.1						
EFC small flood minimum peak t EFC large flood minimum peak t		3420 8015						

		3-1983 ff. of persion Minimum	Maximum	Post-impact Medians	period: 1984-20 Coeff. of Dispersion	F	Maximum	RVA Bo	undaries High		logic Alteratio e Category)
Parameter Group #1 October November December January February March April May June July August September	11.5 21.5 40 51.5 63 100 925.8 2050 1478 87.5 13.5	6.626 3.315 1.088 0.7039 0.8552 1.388 1.128 1.322 1.662 3.486 2.38 1.677	4 4 4 4 4 4 4 2.8 0.09 0.1 0.4 3.9	212 175 134 120 150 392 3125 4940 3025 730 338 264	48.1 42.3 41 43.5 48.65 70 181 307 133 63 67.2 53.9	0.6081 0.484 0.4732 0.6713 0.6418 1.629 5.398 3.895 5.525 0.904 0.4702 0.5227	12.1 21.65 21 21.1 27.5 37 27 19.4 0.045 2.16 2.14	244 407 205 130 186 1080 2465 3740 1670 414 252 190.5	8.297 10.91 26.89 37.08 41.14 62 268.4 973.1 444.5 19.08 8.905 7.327	37.95 38.4 57.3 70 80.95 158.8 1169 3140 2321 167.2 23.65 21.46	-0.2703 0.1351 1.108 0.1554 0.6216 -0.166 -0.1892 -0.1081 0.2162 1.432 -1 -0.7568
Parameter Group #2 1-day minimum 7-day minimum 7-day minimum 30-day minimum 90-day minimum 1-day maximum 3-day maximum 30-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum	3.9 4 4.3.5 6.687 21.78 3420 3337 2986 2201 1766 0 0.01039	1.554 1.513 1.788 2.944 2.639 1.452 1.329 1.434 1.572 1.326 0	0 0 0.01143 0.384 3.492 763 623 440.4 157.8 55.46 0	16 16.67 17.43 49.97 120.3 8150 7643 6547 5504 3475 4	25 26.67 28.49 35.09 41.38 1380 1250 1131 795 401.8 0	0.564 0.49 0.51 0.4621 0.412 1.839 2.162 2.225 2.307 2.876 0	0 0 0 0.05267 2.384 51 51 51 45.75 42.13 0	55 60 61.14 125 176.1 5060 4883 4463 3548 2529 24 0.7067	0.52 0.9011 1.439 4.588 15.27 1571 1556 1416 1100 745.6 0	5.649 5.649 5.711 17.59 42.26 5026 4741 3993 3338 2343 0	-0.861 -0.9189 -0.9189 -0.8378 0.2973 0.2162 0.1351 0.05405 -0.02703 0.06419
Parameter Group #3 Date of minimum Date of maximum	246 125	0.1462 0.06421	181 105	278 241	269 147	0.3593 0.2773	1 88	365 295	226.5 118.1	271 137.4	-0.3745 -0.5135
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration The low pulse threshold is The high pulse threshold is	4 7 4 4	1.125 1.464 0.625 1.156	0 1 1 1 14 245.5	15 44 9 93	0 6 4 2	0 1.333 1 4.75	0 2 0 1	11 11 11 51	2.27 4.94 3.27 2.635	5 10.18 5 5.73	-0.861 -0.861 -0.4527 -0.5135
Parameter Group #5 Rise rate Fall rate Number of reversals	16.25 -11.75 103	2.106 -2.191 0.4515	1 -55 11	101.5 -1 136	3.85 -4.05 110	2.078 -1.407 0.2045	0.36 -17 6	24.5 -0.5 148	9.568 -24.38 73.97	27.37 -6 111.8	-0.1892 -0.166 0.6216
Assessment of Hydrologic Alter	Middle RVA Category	erved Alter.	High RVA C Expected	ategory Observed	Alter.	Low RVA Expected	Category Observed	Alter.			
Parameter Group #1 October November December January February March April May June July August September	12.33 12.33 12.33 16.44 12.33 14.39 12.33 12.33 12.33 12.33 12.33 12.33 12.33	9 14 26 19 20 12 10 11 15 30 0	-0.2703 0.1351 1.108 0.1554 0.6216 -0.166 -0.1892 -0.1081 0.2162 1.432 -1 -0.7568	12.33 12.33 12.33 8.222 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33	28 23 8 7 7 10 7 2 0 3 3 35 34	1.27 0.8649 -0.3514 -0.1486 -0.4324 -0.1892 -0.4324 -0.8378 -1 -0.7568 1.838 1.757	12.33 12.33 12.33 12.33 12.33 10.28 12.33 12.33 12.33 12.33 12.33 12.33 12.33	0 0 3 11 10 15 20 24 22 4 2 0	-1 -1 -0.7568 -0.1081 -0.1892 0.4595 0.6216 0.9459 0.7838 -0.6757 -0.8378 -1		
Parameter Group #2 1-day minimum 3-day minimum 7-day minimum 90-day minimum 90-day minimum 1-day maximum 1-day maximum 3-day maximum 9-day maximum 90-day maximum 80-day maximum Number of zero days Base flow index	14.39 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 32.89 12.31	2 1 1 2 16 16 15 14 13 12 35 0	-0.861 -0.9189 -0.9189 -0.8378 -0.2973 -0.2973 -0.2162 -0.1551 -0.05405 -0.02703 -1	12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33	33 34 34 32 18 1 1 2 2 2 1 2 35	1.676 1.757 1.757 1.595 0.4595 -0.9189 -0.8378 -0.8378 -0.9189 -0.5135 1.838	10.28 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33	2 2 2 3 3 20 21 21 22 24 0	-0.8054 -0.8378 -0.8378 -0.7568 -0.7568 -0.76216 0.7027 0.7027 0.7038 0.9459		
Parameter Group #3 Date of minimum Date of maximum	14.39 12.33	9 6	-0.3745 -0.5135	10.28 12.33	18 26	0.7514 1.108	12.33 12.33	10 5	-0.1892 -0.5946		
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration	14.39 14.39 16.44 12.33	2 2 9 6	-0.861 -0.861 -0.4527 -0.5135	10.28 10.28 8.222 12.33	3 1 12 10	-0.7081 -0.9027 0.4595 -0.1892	12.33 10.28 12.33 12.33	32 2 16 19	1.595 -0.8054 0.2973 0.5405		
Parameter Group #5 Rise rate Fall rate Number of reversals	12.33 14.39 12.33	10 12 20	-0.1892 -0.166 0.6216	12.33 10.28 12.33	0 25 16	-1 1.432 0.2973	12.33 12.33 12.33	27 0 1	1.189 -1 -0.9189		

IHA Percentile Data DoloresRiverAtBedrock_GapsMaintained

Large flood timing Large flood freq.

Large flood riserate Large flood fallrate

0

184.2 -100.7

0

0.1

0

Pre-impact period: 1918-1983 (18 years) Post-impact period: 1984-2020 (37 years) Pre-Impact 50% Post-Impact 10% 25% 75% 90% (75-25)/50 10% 25% 50% 75% 90% (75-25)/50 Parameter Group #1 October November 5.53 6.8 11.5 21.5 83 122 6.626 24.16 37.75 48.1 0.6081 9.488 20.25 35 38.25 50 56.5 52.5 64 71.8 164.5 1062 1260 787 110 86.25 70.5 7.06 7.6 15.7 22.9 13.9 7.69 3.88 3.609 2.71 1.21 3.99 80.75 121 3.315 31.47 36.03 42.3 83.6 0.484 December January February March 40 51.5 63 100 63.75 71.25 92.13 188.8 108.8 111 105.9 282.2 2374 4508 3003 560.8 209.3 68.7 1.088 0.7039 0.8552 1.388 1.128 1.322 1.662 3.486 2.38 1.677 26.8 26.9 31.86 40.84 36.95 30.38 11.13 15.11 26.96 33.1 34.8 40.58 50.45 85 64.3 52.18 53.05 54.65 41 43.5 82 90 106.4 324.8 1755 2370 1433 163.6 140.4 0.4732 0.6713 48.65 70 0.6418 1.629 5.398 3.895 5.525 0.904 March April May June July August September 100 925.8 2050 1478 87.5 13.5 10.1 195.9 678.3 200.5 10.25 6.875 1240 3388 2656 315.3 181 307 133 63 67.2 53.9 0.30 22.5 32.12 42.33 106 Parameter Group #2
1-day minimum
3-day minimum
3-day minimum
30-day minimum
90-day minimum
1-day maximum
3-day maximum
7-day maximum
30-day maximum
90-day maximum 0.315 0.405 0.8296 2.499 14.14 1355 1223 1084 729.8 389.2 3.9 6.375 6.458 8.607 22.18 71.61 6323 5656 5365 4190 2732 11.5 14.57 16.01 42.83 90.67 8015 7643 6474 4667 3406 1.3 0.03634 1.554 1.513 1.788 2.944 2.639 1.452 1.329 1.434 1.572 1.326 3.472 5.467 7.228 11.19 19.69 351.2 244.4 141.4 78.35 64.54 19.45 21.33 23.47 28.54 32.27 776.5 499 318.9 150.3 101.7 25 26.67 28.49 35.09 41.38 1380 1250 1131 795 401.8 33.55 34.4 38 44.76 49.32 3315 3202 2836 1984 1257 45.2 47.13 49.2 58.41 79.19 4134 4079 3654 2622 1985 0.564 0.49 0.51 0.4621 0.412 1.839 2.162 2.225 2.307 2.876 0 0.006 0.03971 0.423 3.639 967.3 690.8 520.4 177.3 79.37 0 4.35 6.687 21.78 3420 3337 2986 2201 1766 90-day maximum Number of zero days Base flow index 0.01766 0.0767 0 1.181 0.003938 0.01039 0 0.1733 0.2814 Parameter Group #3 277.1 230.2 197.2 109.5 275.3 140.3 0.1462 0.06421 20.6 109 180.5 128 269 147 0.3593 0.2773 Date of minimum 221.8 116.8 246 125 312 229.5 360 259.4 Date of maximum Parameter Group #4 1.75 3.75 2.75 2.375 Low pulse count 0.9 6.25 12.3 1.125 0 0 2.5 0 10.5 3.6 11 0 1.333 38.4 7.2 54.3 Low pulse duration 14 5.25 1.464 0.625 1.9 1.45 High pulse count 2 1.5 6 11 9 36.4 4.75 High pulse duration 1.156 Parameter Group #5 7.9 -30.75 69.5 1.24 -14.2 80.6 Rise rate Fall rate 5.5 -49.6 16.25 -11.75 42.13 81.25 -1.05 2.106 -2.191 3.85 -4.05 10 -2.55 20 -1.73 2.078 -1.407 2 -8.25 Number of reversals 40.7 103 116 121.6 0.4515 110 118.5 126.2 0.2045 EFC Monthly Low Flows October Low Flow 6.1 85.25 106.3 6.463 23.36 37.75 47.95 84.02 0.61 October Low Flow
November Low Flow
December Low Flow
January Low Flow
February Low Flow
March Low Flow
April Low Flow
May Low Flow
June Low Flow
June Low Flow 22.5 42 55 65 125.6 111.6 112 110.8 42.3 41 43.5 48.65 8.28 9.6 23.4 25.8 21.4 13.79 4.6 18 12.73 7.18 4.67 9.85 23.5 36 40 55.5 83 4.6 29.63 81.5 67.5 72.5 94.75 168 182.4 90 175.8 109.5 62.5 22.5 3.184 1.048 31.47 26.8 26.9 31.86 40.84 33.28 26.35 10.33 18.98 33.17 31.35 36.03 33.1 34.8 40.58 50.45 53.01 52.18 50.89 56.5 52.5 64 71.8 114.8 157.8 130.9 111.1 83.6 81.7 85.6 106.4 162.1 217.1 174 152.2 136.4 134.4 99.2 0.484 0.4732 0.6636 0.8423 0.6713 0.6418 1.125 0.6647 3.163 1.827 1.001 1.005 1.008 100 149.5 27 80 42 16 231 210.5 90 208 228 151.4 34.9 64.25 104.3 March Low Flow
April Low Flow
May Low Flow
June Low Flow
July Low Flow
August Low Flow
September Low Flow 78.1 73 63 67.15 53.5 0.8252 21.5 21.5 9.4 6.15 50.89 53.03 55.73 42.33 96.15 81.73 69 0.8252 0.6845 0.3872 0.4986 EFC Flow Parameters Extreme low peak Extreme low duration Extreme low timing Extreme low freq. High flow duration High flow duration High flow frequency High flow frequency High flow frequency High flow fall rate Small Flood peak Small Flood duration Small Flood timing 3.75 18.5 245.3 1.489 1.813 0.1195 6 1.33 11 211 0 3.398 36.38 228.9 0 2.249 3.182 0.1325 0 0.1 0.475 2.2 8 215 0.5 392 2.5 205.5 0.185 26 276 42 232 1.2 1156 29.1 260.8 8.2 324.5 -49.56 5060 110 149 191 0 281.7 173 0 305.5 201.5 6 0.8954 0.9 0.3531 0.75 1.158 -0.673 0.6989 0.1929 0.04235 327.5 1.5 111 3 678.5 3.75 240.3 0.5204 2.25 0.3538 7 861 6.1 297 7.2 385.3 -31.22 8000 140 144 417 332.5 549.5 5.5 234 6 220 -84.59 4460 110 146.5 0.5 99.15 -72.17 59.3 0.9 36.59 -303.3 3590 93 105 190 4 158.5 -120 3860 93 128 81.3 104.5 90.68 -254 3520 74 109 4 144 -131 5670 98.5 117 87.48 -155.7 3808 95.25 254.3 -67.5 7770 114.3 126.5 105.4 -182 3555 83.5 127 0.7232 -0.8118 0.2345 0.2849 0.05328 Small Flood timing Small Flood freq. Small Flood riserate Small Flood fallrate 111 0 60.56 -94.53 0 108.9 -88.46 0 177.8 -73.5 8150 0 2.474 -0.424 0 47.01 -144.3 0 64.19 -116.2 77.36 -85.69 1 207.5 -42.59 548.8 -57.29 589.2 -42.41 0.452 -0.5136 Large flood peak Large flood duration 121 121

0

0

0

0

0

0

0

11 Messages:

The longest period of missing data is 345 days.

Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.

304 daily values have been interpolated in year 1971
345 daily values have been interpolated in year 2020
An EFC extreme low flow event has been truncated at the end by missing year 1923 This event is used to compute annual statistics but its length has been truncated.
An EFC extreme low flow event has been truncated at the beginning by missing year 1970 This event is not used to compute annual statistics.

An EFC extreme low now event has been truncated at the beginning by missing year 1970. This event is not used to compute A low pulse has been truncated by missing year 1923.

WARNING: Some of the Colwell parameters are based on fewer than twenty years of data.

Warning: For two-period analyses, IHA re-assigns each daily flow value into a new EFC category.

Therefore, post-impact EFC magnitude values (e.g. monthly low flows) are not directly comparable to the pre-impact values.

To compare pre- to post-impact flow magnitudes, use IHA parameter groups #1 and #2 instead of EFCs.

Pre-impact period: 1951-1983 (33 y	ears)	Post-impact period: 1984-2019 (36 years)
NormalizationFactor	1	1
Mean annual flow	785.3	655.7
Non-Normalized Mean Flow	785.3	655.7
Annual C. V.	1.95	1.82
Flow predictability	0.44	0.46
Constancy/predictability	0.54	0.61
% of floods in 60d period	0.41	0.4
Flood-free season	30	36

	MEDIANS Pre Post	COEI Pre	FF. of DISP.		EVIATION FACTOR edians C.D.	SIGN Med	NIFICANCE COUNT ians C.D.	
Parameter Group #1								
October	126	204.5	0.8889	0.5391	0.623	0.3935	0.001001	0.09409
November	133	173	0.5338	0.3649	0.3008	0.3165	0.001001	0.3844
December	141	156	0.6064	0.4151	0.1064	0.3155	0.1502	0.5185
January February	145 175	156 177.3	0.5345 0.4557	0.4519 0.4062	0.07586 0.01286	0.1545 0.1086	0.3824 0.9069	0.5606 0.8258
March	206	242	1.143	1.279	0.1748	0.1187	0.2783	0.8128
April	1050	875.5	1.571	1.82	0.1662	0.1584	0.6406	0.6436
May	2230	1360	1.447	1.792	0.3901	0.238	0.1522	0.4685
June July	1310 296	1065 325	1.654 1.718	1.751 1.62	0.1872 0.09797	0.05832 0.05699	0.6607 0.7688	0.8368 0.8569
August	174	230.5	0.9569	0.859	0.3247	0.1023	0.05005	0.7367
September	115	153.8	1.152	0.9829	0.337	0.1469	0.01802	0.7878
Danier								
Parameter Group #2 1-day minimum	38	81.15	0.5132	0.6232	1.136	0.2145	0.00	0.4915
3-day minimum	38	84.42	0.6447	0.66	1.221	0.0237	0.00	0.9299
7-day minimum	41.43	88.81	0.8845	0.6859	1.144	0.2245	0.00	0.3473
30-day minimum 90-day minimum	69.67 120.4	120 148.2	0.634 0.4067	0.6167 0.3088	0.7221 0.2306	0.02718 0.2406	0.00 0.007007	0.8839 0.3083
1-day maximum	3890	3345	1.778	1.316	0.1401	0.2596	0.5295	0.4374
3-day maximum	3697	3030	1.72	1.422	0.1803	0.1736	0.3884	0.6066
7-day maximum	3374	2674	1.78	1.554	0.2077	0.1268	0.4264	0.6977
30-day maximum 90-day maximum	2494 1933	1984 1286	1.613 1.521	1.435 1.508	0.2048 0.3346	0.1104 0.008442	0.3023 0.2072	0.7177 0.98
Number of zero days	0	0	0	0	0.5540	0.000442	0.2072	0.30
Base flow index	0.07605	0.1499	1.198	0.7442	0.9707	0.3788	0.00	0.2372
Parameter Croup #2								
Parameter Group #3 Date of minimum	264	249	0.1052	0.2097	0.08197	0.9935	0.1612	0.07608
Date of maximum	128	141.5	0.09563	0.1175	0.07377	0.2286	0.03904	0.4645
D								
Parameter Group #4 Low pulse count	6	4	1	1.688	0.3333	0.6875	0.2022	0.06707
Low pulse duration	6.25	4	1.32	1.719	0.36	0.3021	0.4204	0.4044
High pulse count	4	4	0.5	0.6875	0	0.375	0.1181	0.2543
High pulse duration	5.5	4	2.591	1.375	0.2727	0.4693	0.1642	0.6046
Low Pulse Threshold High Pulse Threshold	125 582							
riigi i disc mi csiloid	302							
Parameter Group #5	26	10	0.7404	0.7552	0.2002	0.0304	0.00400	0.9369
Rise rate Fall rate	26 -20	19 -15.75	-0.75	0.7553 -0.7698	0.2692 0.2125	0.0201 0.02646	0.08408 0.3003	0.9369
Number of reversals	97	119	0.1959	0.145	0.2268	0.26	0.00	0.1732
EFC Low flows October Low Flow	134.5	204.5	0.816	0.4963	0.5204	0.3917	0.001001	0.05005
November Low Flow	134.5	173	0.5221	0.3649	0.5204	0.3917	0.001001	0.05005
December Low Flow	144	156	0.599	0.4151	0.08333	0.307	0.2633	0.5866
January Low Flow	147.5	156	0.5085	0.4351	0.05763	0.1443	0.4965	0.5776
February Low Flow March Low Flow	175 206	177.3 210	0.4557 0.6529	0.3427 0.5738	0.01286 0.01942	0.2479 0.1212	0.9069 0.8659	0.6336 0.6757
April Low Flow	331	385	0.5517	0.6221	0.1631	0.1275	0.2663	0.6096
May Low Flow	389	416.8	0.5723	0.3761	0.07134	0.3428	0.4745	0.5636
June Low Flow	425.8	427	0.3206	0.4587	0.002936	0.4308	0.968	0.2633
July Low Flow August Low Flow	255 187	291 227.8	0.6961 0.6029	0.9278 0.5225	0.1412 0.2179	0.3329 0.1334	0.2142 0.1291	0.2633 0.6697
September Low Flow	144.5	157.5	0.7751	0.7683	0.08997	0.008815	0.3163	0.983
EFC Parameters Extreme low peak	62.75	71.38	0.4143	0.1975	0.1375	0.5232	0.05205	0.1662
Extreme low duration	9.25	4	1.257	1.094	0.5676	0.1297	0.1742	0.7648
Extreme low timing	259	253	0.1393	0.138	0.03279	0.009804	0.7467	0.971
Extreme low freq.	3	1	1	4	0.6667	3	0.1802	0.00
High flow peak High flow duration	1070 3.5	843 3	0.654 0.6429	0.5907 1.667	0.2121 0.1429	0.09668 1.593	0.1131 0.5385	0.7838 0.009009
High flow timing	170	163.5	0.3043	0.2842	0.03552	0.06622	0.7317	0.7728
High flow frequency	3	3.5	0.8333	0.8571	0.1667	0.02857	0.1692	0.7487
High flow rise rate	204.8 -174.7	155 -119.1	1.095 -0.6108	0.7449 -0.9222	0.243	0.3197 0.5098	0.07508	0.4915 0.1161
High flow fall rate Small Flood peak	6353	6200	0.8113	0.429	0.3185 0.02401	0.5098	0.1171 0.9129	0.1161
Small Flood duration	100.5	108	0.1095	0.3287	0.07463	2.003	0.1101	0.06106
Small Flood timing	117	144	0.07855	0.05601	0.1475	0.287	0.02102	0.2643
Small Flood freq. Small Flood riserate	0 283.1	0 154.2	0 1.98	0 1.364	0.4551	0.311	0.4214	0.7678
Small Flood fallrate	-108.6	-86.49	-0.6503	-0.8095	0.2037	0.2448	0.4535	0.7678
Large flood peak	14000	13100	0.2214	0.03053	0.06429	0.8621	0.4935	0.3864
Large flood duration	126	135	0.5238	0.1926	0.07143	0.6323	0.7267	0.2352
Large flood timing Large flood freq.	133 0	137.5 0	0.06011 0	0.008197 0	0.02459	0.8636	0.3704	0.4434
Large flood riserate	236.2	267.7	1.206	0.4545	0.1335	0.6231	0.8649	0.4735
Large flood fallrate	-169	-156.1	-0.5205	-0.516	0.07668	0.008693	0.6587	0.6476
EFC low flow threshold:								
EFC high flow threshold:		582						
EFC extreme low flow threshold:	:	85						
EFC small flood minimum peak f	flow:	3890						
EFC large flood minimum peak f		12680						

		51-1983 leff. of spersion Minimu	ım Maximum	Post-impa	ct period: 1984-20 Coeff. of Dispersio	f	nimum Maximum	RVA Bo Low	oundaries High		ologic Alteratic lle Category)
Parameter Group #1 October November December January February March April May June July August September	126 133 141 145 175 206 1050 2230 1310 296 174	0.8889 0.5338 0.6064 0.5345 0.4557 1.143 1.571 1.447 1.654 1.718 0.9569	21 93.5 70 80 105 96 103 85 181 70 33	452 389 336 320 434 897 5645 8660 6320 2420 971 825	204.5 173 156 156 177.3 242 875.5 1360 1065 325 230.5 153.8	0.5391 0.3649 0.4151 0.4519 0.4062 1.279 1.82 1.792 1.751 1.62 0.859 0.9829	107 96.8 81 73.8 74 126 119 107 74.2 5.2 6.8 19.95	611 839.5 576 340 532.5 1600 5585 9370 3685 1970 870 831	102 118.9 112.2 126.9 162.6 180 680.8 1558 926 199.5 111.2 64.26	173.6 156.1 159.3 174.7 192.9 270.6 1460 3534 2159 486.2 228.1	0.1667 -0.3333 0.1667 0.08333 -0.25 -0.1597 -0.1667 -0.1667 -0.25 -0.3333 0.1667
Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 30-day minimum 10-day minimum 1-day maximum 3-day maximum 30-day maximum 40-day maximum 50-day maximum 50-day maximum 50-day maximum 50-day maximum 60-day	38 38 41.43 69.67 120.4 3890 3697 3374 2494 1933 0	0.5132 0.6447 0.8845 0.634 0.4067 1.778 1.772 1.78 1.613 1.521 0	4.2 5.533 9.157 13.84 73.74 1460 1267 1051 448.6 242.7 0	224 240 246.6 256.8 300 16100 15570 13910 9543 6563 0	81.15 84.42 88.81 120 148.2 3345 3030 2674 1984 1286 0	0.6232 0.66 0.6859 0.6167 0.3088 1.316 1.422 1.554 1.435 1.508 0	1 1.567 1.729 4.757 14.26 350 278.3 267.4 199.4 158.9 0	183 193.7 200.1 319.8 477.3 13300 13030 12590 9397 6053 0	30.22 31.55 33.75 62.68 107.8 2863 2777 2484 1922 1227 0	44.56 48.3 52.87 93.46 133.1 5980 5861 5273 4015 2654 0	-0.9167 -0.9167 -0.8333 -0.1667 -0.4167 -0.1667 -0.08333 -0.25 -0.08333 -0.08333 -0.6667
Parameter Group #3 Date of minimum Date of maximum	264 128	0.1052 0.09563	7 88	282 298	249 141.5	0.2097 0.1175	10 86	363 281	248.7 118	275 139.8	-0.3529 -0.3889
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration The low pulse threshold is The high pulse threshold is	6 6.25 4 5.5	1 1.32 0.5 2.591	0 1 1 1 125 582	18 89 6 112	4 4 4 4	1.688 1.719 0.6875 1.375	0 1 0 1	16 54 14 73	4 4 3 4.22	8.78 10.06 4 10.95	-0.08333 -0.2798 -0.338 -0.08333
Parameter Group #5 Rise rate Fall rate Number of reversals	26 -20 97	0.7404 -0.75 0.1959	10 -87.5 67	79.5 -9 122	19 -15.75 119	0.7553 -0.7698 0.145	5 -40 96	50 -3.4 136	20.22 -24.5 93	32.5 -16.55 104.8	-0.3654 -0.3889 -0.6944
Assessment of Hydrologic Alter	Middle RVA Category	aconvod Alton	High RVA (Alton		w RVA Category	Altox			
Parameter Group #1 October November December January February March April May June July August September	Expected Ob 12 12 12 12 12 12 13.09 12 12 12 12 12 12 12 12 12 12	14 8 14 13 9 11 10 10 10 9 8 14	Expected 0.1667 -0.3333 0.1667 0.08333 -0.25 -0.1597 -0.1667 -0.1667 -0.1667 -0.25 -0.3333 0.1667	Observed 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 22 25 17 13 15 16 7 9 15 19 21	0.8333 1.083 0.4167 0.08333 0.25 0.25 0.3333 -0.4167 -0.25 0.5833 0.75	Descred Observed 12 12 12 12 12 12 12 10.91 12 12 12 12 12 12 12 12 12 12 12	Alter. 0 3 5 10 12 10 10 19 17 12 9 1	-1 -0.75 -0.5833 -0.1667 0 -0.08333 -0.1667 0.5833 0.4167 0 -0.25 -0.9167		
Parameter Group #2 1-day minimum 3-day minimum 7-day minimum 90-day minimum 90-day minimum 1-day maximum 3-day maximum 7-day maximum 90-day maximum 90-day maximum 80-day maximum 90-day maximum	12 12 12 12 12 12 12 12 12 12 12 12 12 1	1 1 2 10 7 10 11 9 11 11 36 4	-0.9167 -0.9167 -0.8333 -0.1667 -0.4167 -0.1667 -0.08333 -0.25 -0.08333 -0.08333 -0.6667	12 12 12 12 12 12 12 12 12 12 12 12 12	30 30 31 23 23 23 9 8 9 8	1.5 1.5 1.583 0.9167 0.9167 -0.25 -0.3333 -0.25 -0.3333 -0.25	12 12 12 12 12 12 12 12 12 12 12	5 5 3 3 6 17 17 18 17 16 0	-0.5833 -0.5833 -0.75 -0.75 -0.5 0.4167 0.4167 0.5 0.4167 0.3333		
Parameter Group #3 Date of minimum Date of maximum	18.55 13.09	12 8	-0.3529 -0.3889	5.455 12	6 19	0.1 0.5833	12 10.91	18 9	0.5 -0.175		
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration	15.27 15.27 19.64 12	14 11 13 11	-0.08333 -0.2798 -0.338 -0.08333	12 10.91 9.818 12	9 6 15 6	-0.25 -0.45 0.5278 -0.5	8.727 8.727 6.545 12	13 13 8 18	0.4896 0.4896 0.2222 0.5		
Parameter Group #5 Rise rate Fall rate Number of reversals	14.18 13.09 13.09	9 8 4	-0.3654 -0.3889 -0.6944	9.818 12 12	5 21 32	-0.4907 0.75 1.667	12 10.91 10.91	22 7 0	0.8333 -0.3583 -1		

IHA Percentile Data

DoloresRiverNearCiscoUT_NP_v2

						Post	Post-impact period: 1984-2019 (36 years)						
	10%	25%	Pre-Ir 50%	npact 75%	90%	(75.	25)/50 10%	25%	Post-Ir 50%	npact 75	i% 90%	(75	5-25)/50
Parameter Group #1	10%	25%	50%	/5%	90%	(/5-	25)/50 10%	0 25%	50%	/5	1% 90%	(/5	-25)/50
October		55	82.5	126	194.5	366.2	0.8889	117.8	149	204.5	259.3	415.1	0.5391
November		100	111.5	133	182.5	305.2	0.5338	116.2	152.3	173	215.4	313.5	0.3649
December		89.4	107	141	192.5	296	0.6064	97.98	128.3	156	193	264.3	0.4151
January		90	117.5	145	195	255.4	0.5345	90.2	115.3	156	185.8	224.4	0.4519
February		127.8	150	175	229.8	300.3	0.4557	115.4	154.3	177.3	226.3	269.2	0.4062
March		130.2	158.5	206	394	524.6	1.143	141.2	176.3	242	485.8	855.6	1.279
April		320.8	480.8	1050	2130	3896	1.571	236.2	582	875.5	2175	3499	1.82
May		470.8	958	2230	4185	6446	1.447	369.9	646	1360	3083	4939	1.792
June		372	697.8	1310	2865	5221	1.654	241.2	459.5	1065	2324	3100	1.751
July		104.8	167	296	675.5	1808	1.718	60.62	186.3	325	712.8	1097	1.62
August September		59.8 36.8	89 59.75	174 115	255.5 192.3	696 352	0.9569 1.152	68.1 81.64	105.5 111.8	230.5 153.8	303.5 262.9	556.7 393	0.859 0.9829
September		30.0	39.73	115	192.5	332	1.152	01.04	111.0	155.0	202.9	393	0.9629
Parameter Group #2													
1-day minimum		13.4	28.5	38	48	92.8	0.5132	12.17	58.18	81.15	108.8	155.4	0.6232
3-day minimum		15.67	29	38	53.5	94.67	0.6447	21.98	60.28	84.42	116	167.3	0.66
7-day minimum		17.6	31.36	41.43	68	102.8	0.8845	30.14	65.01	88.81	125.9	182.9	0.6859
30-day minimum		28.59	56.67	69.67	100.8	129.3	0.634	64.52	81.55	120	155.5	207.3	0.6167
90-day minimum		81.72	103.1	120.4	152.1	228.5	0.4067	85.68	126.5	148.2	172.3	243.1	0.3088
1-day maximum		1736	2435	3890	9350	12680	1.778	1111	1703	3345	6105	9321	1.316
3-day maximum		1474	2350	3697	8710	12250	1.72	1075	1382	3030	5690	9151	1.422
7-day maximum		1199	2158 1454	3374 2494	8164	11270 8240	1.78	854.8	1198	2674 1984	5354 3775	8618 6156	1.554 1.435
30-day maximum		839.1			5476		1.613	539.2	929.4				
90-day maximum Number of zero days		584.7	953.5	1933	3893 0	5326 0	1.521	384 0	765 0	1286	2704 0	4293 0	1.508
Number of zero days Base flow index		0.023	0.03551	0.07605	0.1266	0.1906	1.198	0.0617	0.1164	0.1499	0.2279	0.2796	0.7442
DUSC HOW HILLER		0.023	0.03331	0.07003	0.1200	0.1500	1.170	0.0017	0.1107	0.1755	0.22/3	0.2/30	0./112
Parameter Group #3													
Date of minimum		38.4	236.5	264	275	278.6	0.1052	19.4	196.3	249	273	300.2	0.2097
Date of maximum		98	114.5	128	149.5	190.6	0.09563	102.7	119	141.5	162	255.6	0.1175
Parameter Group #4													
Low pulse count		1.4	3.5	6	9.5	13.2	1	0	2	4	8.75	13	1.688
Low pulse duration		2	3.625	6.25	11.88	24.45	1.32	1	2	4	8.875	12.9	1.719
High pulse count		2	3	4	5	6	0.5	1.7	3	4	5.75	7	0.6875
High pulse duration		3	3.75	5.5	18	81	2.591	1	2.5	4	8	38.2	1.375
Parameter Group #5													
Rise rate		10.7	14.25	26	33.5	57.8	0.7404	8.61	11.15	19	25.5	39.55	0.7553
Fall rate		-42.4	-29.5	-20	-14.5	-11.2	-0.75	-28.65	-22.38	-15.75	-10.25	-7.955	-0.7698
Number of reversals		81	88.5	97	107.5	114.2	0.1959	99.1	108.5	119	125.8	131	0.145
EFC Monthly Low Flows													
October Low Flow		100.8	109.3	134.5	219	271.4	0.816	119.1	150.8	204.5	252.3	383.6	0.4963
November Low Flow		103	111.5	136	182.5	297.7	0.5221	118.7	152.3	173	215.4	302.3	0.3649
December Low Flow		100	111.3	144	197.5	297	0.599	102.5	128.3	156	193	264.3	0.4151
January Low Flow		100	120	147.5	195	255.4	0.5085	101.6	117.9	156	185.8	224.4	0.4351
February Low Flow March Low Flow		127.8 130.2	150 158.5	175 206	229.8 293	300.3 425.4	0.4557 0.6529	124.2 146.5	154.3 169.3	177.3 210	215 289.8	268.6 408.3	0.3427 0.5738
April Low Flow		150.2	249.8	331	432.4	541	0.5529	181.8	254.5	385	494	521.4	0.6221
May Low Flow		129.8	274.1	389	496.8	510	0.5723	130.4	346.3	416.8	503	551.1	0.3761
June Low Flow		258.7	342.3	425.8	478.8	519	0.3206	136.8	317	427	512.9	570.9	0.4587
July Low Flow		146	173	255	350.5	473.4	0.6961	152.8	194	291	464	557.5	0.9278
August Low Flow		114.8	142.9	187	255.6	417.1	0.6029	107.8	176.3	227.8	295.3	367	0.5225
September Low Flow		97.3	116.8	144.5	228.8	296.9	0.7751	103	131	157.5	252	366.5	0.7683
FFC Floor Poor													
EFC Flow Parameters		40.5	49	62.75	75	81.95	0.4143	61.60	65.3	71.38	79.4	82.93	0.1975
Extreme low peak		10.5	49 4.375					61.69	05.3	/1.38 4			
Extreme low duration Extreme low timing		203.6	4.375	9.25 259	16 284	26.35 321.8	1.257 0.1393	1 215	229.3	4 253	6.375 279.8	14.95 347.8	1.094 0.138
Extreme low freq.		0.4	1	3	4	5	0.1393	0	229.3	233	275.0	7	0.136
High flow peak		653.9	751.5	1070	1451	1685	0.654	646.6	702	843	1200	1930	0.5907
High flow duration		1	3	3.5	5.25	22	0.6429	1	2	3	7	35.3	1.667
High flow timing		86.55	109	170	220.4	301.3	0.3043	95.1	137	163.5	241	258.6	0.2842
High flow frequency		0.4	2	3	4.5	6	0.8333	1	2	3.5	5	6.3	0.8571
High flow rise rate		110.2	156.3	204.8	380.5	696.2	1.095	60.43	105.8	155	221.2	376.2	0.7449
High flow fall rate		-369.7	-229.5	-174.7	-122.8	-69.13	-0.6108	-234.1	-181	-119.1	-71.21	-57.87	-0.9222
Small Flood peak		4170	5171	6353	10330	11300	0.8113	4230	4715	6200	7375	9612	0.429
Small Flood duration		62.25	93.5	100.5	104.5	114	0.1095	29.2	86.5	108	122	135	0.3287
Small Flood timing		99	113.5	117	142.3	195.5	0.07855	108	126	144	146.5	228.6	0.05601
Small Flood freq.		0	0	0	1	1	0	0	0	0	1	1	0
Small Flood riserate		108.9	162.1	283.1	722.5	1302	1.98	73.29	91.52	154.2	301.9	1729	1.364
Small Flood fallrate		-212.7	-136.1	-108.6	-65.46	-50.36	-0.6503	-439.7	-145.2	-86.49	-75.23	-66.45	-0.8095
Large flood peak Large flood duration		13000	13000 103	14000 126	16100 169	16100 169	0.2214 0.5238	12900 122	12900 122	13100 135	13300 148	13300 148	0.03053 0.1926
Large flood duration		112	112	133	134	134	0.06011	136	136	137.5	139	139	0.008197
Large flood freq.		0	0	0	0	0.6	0.06011	130	0	137.3	0	139	0.008197
Large flood riserate		217.8	217.8	236.2	502.7	502.7	1.206	206.9	206.9	267.7	328.6	328.6	0.4545
Large flood fallrate		-212.8	-212.8	-169	-124.8	-124.8	-0.5205	-196.3	-196.3	-156.1	-115.8	-115.8	-0.516

8 Messages:

The longest period of missing data is 61 days.

Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.
61 daily values have been interpolated in year 1951
42 daily values have been interpolated in year 2019
Dates of extreme flows are widely scattered. Use statistics with caution.

Warning: For two-period analyses, IHA re-assigns each daily flow value into a new EFC category.
Therefore, post-impact EFC magnitude values (e.g. monthly low flows) are not directly comparable to the pre-impact values.
To compare pre- to post-impact flow magnitudes, use IHA parameter groups #1 and #2 instead of EFCs.

EFC small flood minimum peak flow: EFC large flood minimum peak flow:

1020 1739

DoloresRiverBelowRicoCO_v2								
Pre-impact period: 1952-1983 (32 years)		Post-in	npact period: 19	984-2019 (34 years)			
NormalizationFactor	1			1	, , ,			
Mean annual flow Non-Normalized Mean Flow	134.5 134.5			126.6 126.6				
Annual C. V.	1.77			1.63				
Flow predictability	0.54			0.49				
Constancy/predictability % of floods in 60d period	0.47 0.49			0.49 0.47				
Flood-free season	151			80				
	MEDIANS Pre Post		FF. of DISP. Post		EVIATION FACTOR edians C.D.	SIG Med	NIFICANCE COUNT ians C.D.	
Parameter Group #1 October	28.5	34	1.088	0.7103	0.193	0.347	0.1181	0.4645
November	20.3	24.4	0.8125	0.7103	0.1091	0.02963	0.2603	0.9109
December	18.5	19.2	0.5676	0.7669	0.03784	0.3513	0.4474	0.5175
January February	16.5 15.25	18.55 17.95	0.5455 0.5328	0.7278 0.5578	0.1242 0.177	0.3342 0.04695	0.3393 0.1131	0.3323 0.8689
March	20	31.6	0.5375	0.6092	0.58	0.1334	0.001001	0.6667
April	76	122.3	1.184	0.5691	0.6086	0.5194	0.002002	0.1051
May June	392.5 435	461 345.8	0.6032 1.482	0.493 1.48	0.1745 0.2052	0.1828 0.001252	0.0971 0.4875	0.4324 0.997
July	89.5	85.85	1.223	1.097	0.04078	0.1034	0.9019	0.7337
August	57	56.1	0.6404	0.6087	0.01579	0.04937	0.8939	0.8679
September	38	42.4	0.8914	0.8228	0.1158	0.07699	0.5085	0.7487
Parameter Group #2								
1-day minimum 3-day minimum	12 12.83	12 12.67	0.4167 0.4156	0.7473 0.6889	0 0.01299	0.7935 0.6578	0.2172 0.9209	0.06306 0.1161
7-day minimum	13.79	13.37	0.4378	0.6502	0.03005	0.4851	0.7187	0.1161
30-day minimum	15.12	15.54	0.3897	0.4783	0.02767	0.2271	0.3844	0.4755
90-day minimum 1-day maximum	16.17 1020	18.19 910	0.4263 0.6588	0.6679 0.5393	0.1253 0.1078	0.5669 0.1814	0.06807 0.4695	0.1742 0.4585
3-day maximum	951.2	854.3	0.6558	0.5726	0.1018	0.1269	0.5726	0.6827
7-day maximum	856.3	812.3	0.6846	0.5016	0.05138	0.2673	0.6106	0.3784
30-day maximum 90-day maximum	650.5 360.7	617.1 366.3	0.8148 1.028	0.5176 0.5946	0.05137 0.01528	0.3647 0.4218	0.6617 0.9269	0.1812 0.1101
Number of zero days	0	0	0	0.5510	0.01320	0.1210	0.5205	0.1101
Base flow index	0.1269	0.123	0.5548	0.6191	0.03093	0.1158	0.7838	0.6326
Parameter Group #3								
Date of minimum	32	30.5	0.1605	0.1646	0.008197	0.02553	0.8539	0.9469
Date of maximum	157	149.5	0.0403	0.05601	0.04098	0.3898	0.1421	0.0991
Parameter Group #4								
Low pulse count	5	3	0.95	1.417	0.4 0.15	0.4912	0.1191	0.2002
Low pulse duration High pulse count	5 3	5.75 4	1.6 1	3.413 1	0.3333	1.133	0.5746 0.03804	0.1061 0.7457
High pulse duration	8	8	5.656	4.203	0	0.2569	0.9499	0.5255
Low Pulse Threshold High Pulse Threshold	20 114							
nigii ruise miesnoiu	114							
Parameter Group #5	-	4.025	0.675	0.0727	0.405	0.2020	0.2042	0.2052
Rise rate Fall rate	5 -4	4.025 -3.975	0.675 -0.75	0.8727 -0.4654	0.195 0.00625	0.2928 0.3795	0.3013 0.07508	0.3063 0.3704
Number of reversals	98	100	0.2321	0.2275	0.02041	0.02	0.6577	0.9399
EFC Low flows								
October Low Flow	28.5	34	0.9781	0.7103	0.193	0.2738	0.1181	0.5005
November Low Flow	22	25.5	0.7955	0.6902	0.1591	0.1323	0.2112	0.5776
December Low Flow January Low Flow	19 18	20.8 20.8	0.6579 0.5556	0.5889 0.5048	0.09474 0.1556	0.1048 0.09135	0.2633 0.1111	0.7798 0.6396
February Low Flow	17	20.4	0.4706	0.4099	0.2	0.1289	0.04004	0.5526
March Low Flow April Low Flow	21 53.5	31.1 70.6	0.6667	0.4188 0.3909	0.481 0.3196	0.3718 0.4347	0.002002 0.01502	0.1041 0.1311
May Low Flow	93	70.6 107	0.6916 0.2903	0.3909	0.1505	0.4347	0.01502	0.1311
June Low Flow	92	86.75	0.2473	0.5444	0.05707	1.201	0.4154	0.1231
July Low Flow August Low Flow	72 54	69 55.5	0.4583 0.6296	0.5116 0.5342	0.04167 0.02778	0.1162 0.1515	0.8659 0.6627	0.7538 0.5245
September Low Flow	36	41	0.7778	0.6256	0.1389	0.1956	0.3964	0.4044
FFC Development								
EFC Parameters Extreme low peak	14.5	13.3	0.1379	0.3308	0.08276	1.398	0.2292	0.02302
Extreme low duration	2.5	4	0.6	2.625	0.6	3.375	0.08609	0.01201
Extreme low timing Extreme low freq.	24 5.5	30 1	0.127 1.591	0.2117 5	0.03279 0.8182	0.6667 2.143	0.6717 0.1842	0.1331 0.07207
High flow peak	163.3	172.5	1.156	0.4116	0.05666	0.644	0.4735	0.6326
High flow duration	4.25	4.75	5.647	1.921	0.1176	0.6598	0.5135	0.4955
High flow timing High flow frequency	181.8	200.3	0.2865 0.9167	0.2456 0.75	0.1011 0.3333	0.143 0.1818	0.6336 0.05305	0.3914 0.6527
High flow rise rate	28.47	28.21	0.8238	0.7293	0.009116	0.1148	0.9489	0.7578
High flow fall rate	-24.71	-23.17	-0.3638	-0.661	0.06258	0.8171	0.5516	0.09009
Small Flood peak Small Flood duration	1190 89.5	1230 86	0.2668 0.6453	0.2846 0.3372	0.03361 0.03911	0.06651 0.4774	0.8198 0.7187	0.8398 0.3183
Small Flood timing	160.5	159	0.06148	0.04918	0.008197	0.2	0.7778	0.7147
Small Flood freq. Small Flood riserate	0 32.65	0 30	1 739	0 5180	0.00114	0.7015	0.5105	0.4875
Small Flood riserate Small Flood fallrate	-26.28	-27.55	1.738 -0.4536	0.5189 -0.2636	0.08114 0.04834	0.7015	0.5185 0.6336	0.4875
Large flood peak	1790		0.01117					
Large flood duration Large flood timing	103 157		0.2524 0.03825					
Large flood timing Large flood freq.	0	0	0.03825	0				
Large flood riserate	40.86		3.021					
Large flood fallrate	-36.13		-0.6577					
EFC low flow threshold:								
EFC high flow threshold: EFC extreme low flow threshold	ŀ	114 15						
LI C EXCEINE IOW HOW UNESHOLD	••	13						

	Pre-impact period: 1952-19			Post-impac	t period: 1984-20						
	Coeff. c Medians Dispers		Maximum	Medians	Coeff. of Dispersion		n Maximum	RVA Bou Low	ındaries High		ogic Alteration e Category)
Parameter Group #1 October November December January February March April May June July August September	28.5 22 18.5 16.5 15.25 20 76 392.5 435 89.5 57 38	1.088 0.8125 0.5676 0.5455 0.5328 0.5375 1.184 0.6032 1.482 1.223 0.6404 0.8914	14 13 12 10 8 11 26 88 56.5 32 29 16	104 56 42 38 32 79 240 894 1315 650 210 212	34 24.4 19.2 18.55 17.95 31.6 122.3 461 345.8 85.85 56.1 42.4	0.7103 0.7884 0.7669 0.7278 0.5578 0.6092 0.5691 0.493 1.48 1.097 0.6087 0.8228	12 11 5.67 7.5 7.6 11.1 39.85 116 30.35 16.8 12 13.55	178 65 55.6 114 115 167 422.5 913 1065 517 262 193	25 20 16 15 14.5 18 56.95 327.1 302.5 67 44 33.34	36.55 27.78 22 19.11 18.22 19.12 134 477.3 671.4 144.3 73.44 51.33	-0.05882 -0.2036 -0.2803 -0.2036 -0.395 -0.5656 -0.5686 -0.2157 -0.2941 -0.1312 -0.05882 -0.1373
Parameter Group #2 1-day minimum 7-day minimum 7-day minimum 30-day minimum 90-day minimum 1-day maximum 3-day maximum 3-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum	12 12.83 13.79 15.12 16.17 1020 951.2 856.3 650.5 360.7 0	0.4167 0.4156 0.4378 0.3897 0.4263 0.6588 0.6558 0.6846 0.8148 1.028 0	7 7.167 7.571 8.05 9.861 167 159.3 143.7 102.3 78.56 0 0.04166	26 28.67 29.43 30.8 34.71 1810 1757 1661 1321 737.5 0	12 12.67 13.37 15.54 18.19 910 854.3 812.3 617.1 366.3 0	0.7473 0.6889 0.6502 0.4783 0.6679 0.5393 0.5726 0.5016 0.5176 0.5946 0	4.65 4.867 5.044 5.883 7.781 152 148 135.4 119.4 86.23 0	26 27.33 29.14 31.87 33.99 1730 1693 1580 1078 617.4 0	11 12.3 13.11 14.28 15.52 804.9 791.4 720.9 561.2 305.3 0	13.11 14.48 14.98 15.58 18 1211 1115 1076 867.4 465.6 0	-0.6533 -0.5294 -0.6078 -0.6078 -0.451 0.09804 0.01961 0.01961 0.09804 -0.1373 0
Parameter Group #3 Date of minimum Date of maximum	32 157	0.1605 0.0403	2 129	363 250	30.5 149.5	0.1646 0.05601	8 97	363 281	41.89 148.9	321 160	-0.1933 -0.3484
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration The low pulse threshold is The high pulse threshold is	5 5 3 8	0.95 1.6 1 5.656	0 1 1 1 20 114	13 64.5 8 104	3 5.75 4 8	1.417 3.413 1 4.203	0 1 1 1	16 166 8 71	3 3 2 4	7 6.76 4.11 37.94	-0.2249 -0.1529 -0.05882 0.3032
Parameter Group #5 Rise rate Fall rate Number of reversals	5 -4 98	0.675 -0.75 0.2321	2 -11.5 64	15 -2 123	4.025 -3.975 100	0.8727 -0.4654 0.2275	1 -10 57	11 -1.2 137	4 -5 90.89	6.555 -4 108.1	-0.1933 -0.2605 -0.05882
Assessment of Hydrologic Alter	ation Middle RVA Category		High RVA Ca	ategory		Low RVA	Category				
Parameter Group #1 October November December January February March April May June July August September	Expected Observe 13.81 13.81 18.06 13.81 14.88 13.81 12.75 12.75 12.75 12.75 12.75 12.79 13.81 15.94	13 11 13 11 9 6 20 10 9	Expected -0.05882 -0.2036 -0.2803 -0.2036 -0.395 -0.5656 0.5686 -0.2157 -0.2941 -0.1312 -0.05882 -0.1373	Observed 10.63 10.63 8.5 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63	Alter. 16 15 11 15 16 25 11 15 10 9 8	0.5059 0.4118 0.2941 0.4118 0.5059 1.353 0.03529 0.4118 -0.05882 -0.1529 -0.2471 0.3176		Alter. 5 8 10 8 9 3 3 9 15 13	-0.4771 -0.1634 0.3445 -0.1634 0.05882 -0.6863 -0.7176 -0.1529 0.4118 0.3595 0.479 -0.1529		
Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 90-day minimum 1-day maximum 1-day maximum 3-day maximum 3-day maximum 9-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum	20.19 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75	7 6 5 5 7 14 13 13 14 11 34	-0.6533 -0.5294 -0.6078 -0.6078 -0.451 0.09804 0.01961 0.01961 0.09804 -0.1373 0	10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63	13 13 13 17 17 17 8 9 7 7 7 11 0	0.2235 0.2235 0.2235 0.6 0.6 -0.2471 -0.1529 -0.3412 -0.3412 0.03529	3.188 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63	14 15 16 12 10 12 12 14 13 12 0	3.392 0.4118 0.5059 0.1294 -0.05882 0.1294 0.1294 0.3176 0.2235 0.1294		
Parameter Group #3 Date of minimum Date of maximum	14.88 13.81	12 9	-0.1933 -0.3484	8.5 9.563	11 9	0.2941 -0.05882	10.63 10.63	11 16	0.03529 0.5059		
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration	18.06 10.63 20.19 13.81	14 9 19 18	-0.2249 -0.1529 -0.05882 0.3032	8.5 9.563 10.63 10.63	5 12 14 8	-0.4118 0.2549 0.3176 -0.2471	7.438 8.5 3.188 9.563	15 7 1 8	1.017 -0.1765 -0.6863 -0.1634		
Parameter Group #5 Rise rate Fall rate Number of reversals	14.88 14.88 12.75	12 11 12	-0.1933 -0.2605 -0.05882	10.63 9.563 10.63	10 17 11	-0.05882 0.7778 0.03529	8.5 9.563 10.63	12 6 11	0.4118 -0.3725 0.03529		

IHA Percentile Data

DoloresRiverBelowRicoCO_v2

							Post-in	Post-impact period: 1984-2019 (34 years)					
	10%	25%	Pre-Im	pact 75%	90%	(75	25)/50 10%	25%	Post-Imp	oact 75%	90%	(75	25)/50
Parameter Group #1	10%	25%	50%	/5%	90%	(/5-	25)/50 10%	25%	50%	75%	90%	(75-	-25)/50
October		19	24	28.5	55	76.4	1.088	24.1	27.23	34	51.38	87.55	0.7103
November	1	5.6	18.75	22	36.63	48.7	0.8125	13.23	19.79	24.4	39.03	51.83	0.7884
December		13	16	18.5	26.5	34	0.5676	9.94	14.25	19.2	28.98	36.05	0.7669
January	1	2.3	14	16.5	23	28	0.5455	7.99	13.88	18.55	27.38	31	0.7278
February		1.6	14.13	15.25	22.25	30.1	0.5328	9.66	14	17.95	24.01	30.88	0.5578
March		4.3	17	20	27.75	38.8	0.5375	17.05	24.2	31.6	43.45	83.2	0.6092
April		1.9	50.88	76	140.9	169.6	1.184	62.3	96.05	122.3	165.6	210.3	0.5691
May		2.5	294	392.5	530.8	680.4	0.6032	246.5	310.5	461	537.8	652.5	0.493
June		4.2 5.3	219	435 89.5	863.5 171	1140 397.2	1.482 1.223	75.73 32.1	197.1 58.08	345.8 85.85	708.8 152.3	869 226	1.48 1.097
July August		2.6	61.5 44	89.5 57	80.5	153.8	0.6404	32.1 27.3	38.9	56.1	73.05	109	0.6087
September		.65	30.13	38	64	112	0.8914	24.53	29.13	42.4	73.05 64.01	96.18	0.8228
September	27	.03	30.13	30	04	112	0.0514	24.33	25.13	72.7	04.01	50.10	0.0220
Parameter Group #2													
1-day minimum	1	0.3	11	12	16	21.4	0.4167	5.965	8.233	12	17.2	23.05	0.7473
3-day minimum		11	11.67	12.83	17	22	0.4156	6.565	8.648	12.67	17.38	24.33	0.6889
7-day minimum		11	12.25	13.79	18.29	23.74	0.4378	6.945	9.341	13.37	18.04	25.01	0.6502
30-day minimum		1.2	13.78	15.12	19.67	25.48	0.3897	7.509	11.94	15.54	19.37	26.78	0.4783
90-day minimum	12		14.6	16.17	21.49	28.47	0.4263	9.83	13.85	18.19	26	29.91	0.6679
1-day maximum		03	685.5	1020	1358	1739	0.6588	476	686.8	910	1178	1480	0.5393
3-day maximum		45	666.3	951.2	1290	1634	0.6558	434.3	643.3	854.3	1133	1415	0.5726
7-day maximum		1.4	604.8	856.3	1191	1508	0.6846	382.7	599.7	812.3	1007	1314	0.5016
30-day maximum	37		474.6	650.5	1005	1218	0.8148	315.1	479.6	617.1	799	994.6	0.5176
90-day maximum		31	262.4	360.7	633.4	685.5	1.028	190.5	279.5	366.3	497.3	594.4	0.5946
Number of zero days	0.064	0	.08434	0 0.1269	0 0.1548	0 0.1908	0 0.5548	0 0.07213	0 0.07861	0 0.123	0 1549	0 0.1909	0.6191
Base flow index	0.064	U.	.00+3*	0.1209	0.1340	0.1900	0.3340	0.07213	0.0/001	0.123	0.1548	0.1909	0.0191
Parameter Group #3													
Date of minimum	32	1.6	351.8	32	44.5	64.4	0.1605	330.5	357.3	30.5	51.5	64	0.1646
Date of maximum	13		147.3	157	162	174.8	0.0403	131.5	140.5	149.5	161	169	0.05601
Parameter Group #4													
Low pulse count		0	3	5	7.75	9.7	0.95	0	1	3	5.25	11.5	1.417
Low pulse duration		1	2	5	10	26.2	1.6	1.95	2.625	5.75	22.25	74.1	3.413
High pulse count		1.3	2	3	5	5	1	2	2	4	6	8	1
High pulse duration		2	2.125	8	47.38	63.85	5.656	2	3.875	8	37.5	52.25	4.203
Parameter Group #5		2	3.625	5	-	7.05	0.675	2.25	2 275	4.025	c 000		0.8727
Rise rate Fall rate		3 -7	3.625 -6	-4	7 -3	7.85 -3	-0.75	2.25	3.375 -5	-3.975	6.888 -3.15	-2.225	-0.4654
Number of reversals	8	-/ 3.3	-6	98	110.8	118	0.2321	-6.75 79	88.25	100	-5.15 111	125.5	0.2275
Number of reversus		J.J	00	50	110.0	110	0.2321	,,	00.23	100	111	123.3	0.2273
EFC Monthly Low Flows													
October Low Flow		19	24	28.5	51.88	66.7	0.9781	24.1	27.23	34	51.38	81.9	0.7103
November Low Flow		18	20	22	37.5	49.3	0.7955	17.29	21.45	25.5	39.05	52.76	0.6902
December Low Flow		16	16	19	28.5	34	0.6579	16.4	18.1	20.8	30.35	36.1	0.5889
January Low Flow		16	16	18	26	28.6	0.5556	16	17.35	20.8	27.85	32	0.5048
February Low Flow		16	16	17	24	31	0.4706	16	17.25	20.4	25.61	32.2	0.4099
March Low Flow		17	18	21	32	35.6	0.6667	19.6	26.4	31.1	39.43	48.6	0.4188
April Low Flow		28	38	53.5	75	86.9	0.6916	47.2	55.9	70.6	83.5	100.8	0.3909
May Low Flow		63	78.5	93	105.5	108	0.2903	70.12	88.6	107	109	109.4	0.1907
June Low Flow July Low Flow		59 3.2	87.75 58	92	110.5	113.6	0.2473 0.4583	31.85 31	56.15	86.75 69	103.4 88.48	113.5	0.5444
July Low Flow August Low Flow		2.4	41	72 54	91 75	108.4 82.8	0.4585	27.24	53.18 37.8	55.5	67.45	106 76.96	0.5116 0.5342
September Low Flow		4.6	30	36	58	75.8	0.7778	24.63	31.41	41	57.06	65.1	0.6256
	-		50	50	50	, 5.0	0	2 1103	51.11		37.00	03.1	0.0230
EFC Flow Parameters													
Extreme low peak	1	2.2	13	14.5	15	15	0.1379	8.804	10.3	13.3	14.7	15	0.3308
Extreme low duration		1	2	2.5	3.5	13.2	0.6	1	1.5	4	12	82.2	2.625
Extreme low timing	32		0.5	24	47	64.8	0.127	318.6	345.5	30	57	157.2	0.2117
Extreme low freq.		0	0	5.5	8.75	12.4	1.591	0	0	1	5	6.5	5
High flow peak		0.8	144.3	163.3	333	484.7	1.156	130.5	147.1	172.5	218.1	477.8	0.4116
High flow duration		.55	2	4.25	26	46.05	5.647	1.75	3.375	4.75	12.5	38	1.921
High flow timing	11	3.8	130.1	181.8	235	257	0.2865	105	126.4	200.3	216.3	235.5	0.2456
High flow frequency		1	1.25	3	4 43	5	0.9167	1 12.71	21 24	4 28.21	5	7.5	0.75
High flow rise rate High flow fall rate	15		19.55 -28.58	28.47 -24.71	43 -19.59	67.95 -16.42	0.8238 -0.3638	12./1 -39.28	21.34 -27.31	28.21 -23.17	41.91 -12	55.75 -9.5	0.7293 -0.661
Small Flood peak Small Flood duration	41	120	1100 46.25	1190 89.5	1418 104	1585 128	0.2668 0.6453	1038 49	1100 73	1230 86	1450 102	1670 110.4	0.2846 0.3372
Small Flood duration Small Flood timing		.25 .39	46.25 150.5	89.5 160.5	104 173	128 216	0.6453	49 138.4	/3 145	86 159	102 163	110.4 213.8	0.3372
Small Flood timing Small Flood free.		.39	150.5	160.5	1/3	216	0.06148	138.4	145	159	163	213.8	0.04918
Small Flood riserate	19	91	24.96	32.65	81.72	242	1.738	19.2	21.46	30	37.02	167.3	0.5189
Small Flood fallrate			-30.39	-26.28	-18.47	-13.86	-0.4536	-41.32	-29.21	-27.55	-21.95	-17.59	-0.2636
Large flood peak		90	1790	1790	1810	1810	0.01117						2.2250
Large flood duration		82	82	103	108	108	0.2524						
Large flood timing		48	148	157	162	162	0.03825						
Large flood freq.		0	0	0	0	0.7	0	0	0	0	0	0	0
Large flood riserate		82	29.82	40.86	153.3	153.3	3.021						
Large flood fallrate	-4	0.9	-40.9	-36.13	-17.14	-17.14	-0.6577						

6 Messages:

The longest period of missing data is 49 days.

Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.

91 daily values have been interpolated in year 2019

Warning: For two-period analyses, IHA re-assigns each daily flow value into a new EFC category.

Therefore, post-impact EFC magnitude values (e.g. monthly low flows) are not directly comparable to the pre-impact values.

To compare pre- to post-impact flow magnitudes, use IHA parameter groups #1 and #2 instead of EFCs.

EFC small flood minimum peak flow: EFC large flood minimum peak flow: 2935 5158

DoloresRiverAtDoloresCO_v2								
Pre-impact period: 1922-1983	(62 years)			Post-impact period	: 1984-2019 (36 years)			
NormalizationFactor	1			1				
Mean annual flow	436.2			402				
Non-Normalized Mean Flow Annual C. V.	436.2 1.66			402				
Flow predictability	0.52			1.6 0.5				
Constancy/predictability	0.45			0.44				
% of floods in 60d period	0.49			0.46				
Flood-free season	102			109				
	MEDIANS Pre Post	COE Pre	FF. of DISP.	Post	DEVIATION FACTOR Medians C.D.		GNIFICANCE COUNT dians C.D.	
	rie rost	rie		rost	Medians C.D.	Me	dialis C.D.	
Parameter Group #1								
October	81	90.3	1.117	0.8007		0.2834	0.3574	0.6056
November	60.75	69.28	0.677	0.817		0.2069	0.1902 0.2382	0.6547
December January	48 45	51.95 48	0.5052 0.3389	0.5255 0.5969		0.04018 0.7613	0.2382	0.8879 0.04404
February	50	55.85	0.5369	0.4528		0.09445	0.1451	0.6857
March	80	129.5	0.5688	1.014	0.6188	0.782	0.00	0.04004
April	534	652.3	1.153	0.5772		0.4995	0.1081	0.05806
May	1630	1550	0.7147	0.6274		0.1222	0.7968	0.5666
June July	1168 296	833.8 238.5	1.096 0.7348	1.441 0.9224		0.3148 0.2554	0.1642 0.1491	0.2152 0.2823
August	221	195	0.6335	0.4667		0.2633	0.2312	0.2823
September	121	137.5	0.8058	0.55		0.3174	0.3133	0.2723
Parameter Group #2 1-day minimum	34	35	0.5147	0.7457	0.02941	0.4488	0.4945	0.07908
3-day minimum	35.67	37.5	0.5093	0.6998		0.3739	0.5165	0.1742
7-day minimum	37.43	39.5	0.4981	0.7055		0.4164	0.3463	0.1081
30-day minimum	42.38	45.35	0.3995	0.6594	0.07	0.6504	0.2112	0.01902
90-day minimum	46.63	51.07	0.4518	0.5517		0.2213	0.1251	0.3203
1-day maximum 3-day maximum	2935 2787	2645 2450	0.7871 0.7395	0.6153 0.6469		0.2182 0.1252	0.3353 0.2422	0.3624 0.6336
7-day maximum 7-day maximum	2458	2258	0.7395	0.5815		0.1252	0.2422	0.4605
30-day maximum	1965	1845	0.722	0.5343	0.06085	0.26	0.5235	0.3544
90-day maximum	1313	1117	0.8212			0.09718	0.2713	0.6807
Number of zero days	0 0.09792	0 0.1091	0.6648	0 5774		0.1316	0.2422	0.5906
Base flow index	0.09792	0.1091	0.0048	0.5774	0.1145	0.1316	0.3433	0.5906
Parameter Group #3								
Date of minimum	346.5	362.5	0.14	0.1728		0.2341	0.2713	0.4675
Date of maximum	139.5	142	0.05191	0.0485	0.01366	0.06579	0.6777	0.6476
Parameter Group #4								
Low pulse count	4.5	3	1.333	2	0.3333	0.5	0.2122	0.1131
Low pulse duration	4.25	4	1.588	1.406		0.1146	0.8769	0.7147
High pulse count	3	2.5	0.6667	0.8		0.2	0.09409	0.3724
High pulse duration	9 55	9	4.361	4.403	0	0.009554	0.9059	0.979
Low Pulse Threshold High Pulse Threshold	388							
g								
Parameter Group #5								
Rise rate Fall rate	14.5 -13	11.75 -10.45	1.078 -0.7788	1.087 -0.6459		0.008953 0.1707	0.1802 0.1301	0.992 0.5375
Number of reversals	-13 113	110	0.2434	0.2023		0.1707	0.1301	0.5375
ramber of reversals	113	110	0.2.15.	0.2025	0.02033	0.1000	0.5505	0.1025
EFC Low flows								
October Low Flow November Low Flow	80	90.3 70	0.8188	0.8007		0.02209	0.2633	0.974 0.6927
December Low Flow	63.5 51	60	0.6063 0.3799	0.7429 0.3833		0.2252 0.009032	0.2903 0.05005	0.6927
January Low Flow	50	53.5	0.34	0.4065		0.1957	0.4234	0.4915
February Low Flow	55	58	0.3636	0.5362		0.4746	0.3594	0.1381
March Low Flow	84	114	0.4821	0.5197		0.07797	0.00	0.7477
April Low Flow May Low Flow	209 323	244.5 286	0.6298 0.3096	0.4964 0.2972		0.2118 0.04003	0.07307	0.3524 0.9419
May Low Flow June Low Flow	323 292	258.3	0.3096			0.5514	0.3073 0.2002	0.9419
July Low Flow	269	236.3	0.461	0.628	0.1217	0.3624	0.1391	0.08609
August Low Flow	214	191	0.5864	0.4817		0.1787	0.2603	0.4294
September Low Flow	121	133.3	0.6591	0.4587	0.1012	0.304	0.3003	0.2222
EFC Parameters								
Extreme low peak	38	35.5	0.1579	0.2613		0.6547	0.05706	0.1001
Extreme low duration	3	4	1.167	1.188		0.01786	0.1732	0.971
Extreme low timing	349	364	0.1086			0.3836	0.2022	0.1752
Extreme low freq. High flow peak	3.5 501	2 665	1.714 1.013			0.3854 0.3111	0.2913 0.08008	0.3313 0.4695
High flow duration	3	5	2.792			1.293	0.1121	0.4693
High flow timing	189	183	0.2445	0.2391	0.03279	0.02235	0.7678	0.9089
High flow frequency	3	2 20	0.0501	0.875		0.125	0.3654	0.7648
High flow rise rate High flow fall rate	81.49 -65.5	72.36 -58.5	0.9591 -0.6864	0.7459 -0.4934		0.2223 0.2812	0.6306 0.2312	0.4795 0.3383
Small Flood peak	3880	3835	0.2925	0.2829		0.03284	0.2312	0.8969
Small Flood duration	96	104	0.2266	0.2163	0.08333	0.04509	0.2102	0.8699
Small Flood timing	142	143	0.05533	0.04986		0.09877	0.8208	0.8418
Small Flood freq. Small Flood riserate	0 94.57	0 67.64	0.9776	0.4622		0.5272	0.009009	0.5756
Small Flood riserate Small Flood fallrate	94.57 -65.24	-61.38	-0.4503	-0.592		0.52/2	0.009009	0.5756
Large flood peak	5775	5540	0.2394	0.532	0.04069		0.7107	
Large flood duration	101.5	99	0.3768		0.02463		0.8288	
Large flood timing	155 0	145 0	0.1113 0	0	0.05464		0.4795	
Large flood freq. Large flood riserate	105.3	110.1	2.478		0.04634		0.8368	
Large flood fallrate	-87.72	-97.74	-1.642		0.1142		0.8048	
EFC low flow threshold: EFC high flow threshold:		388						
EFC extreme low flow threshol	d:	41						

	Pre-impact period: 1922- Coeff Medians Dispe	. of	Maximum	Post-impa Medians	ct period: 1984-2i Coeff. o Dispersi	f	Maximum	RVA Bo Low	undaries High		gic Alteration Category)
Parameter Group #1 October November December January February March April May June July August September	81 60.75 48 45 50 80 534 1630 1168 296 221	1.117 0.677 0.5052 0.3389 0.5 0.5688 1.153 0.7147 1.096 0.7348 0.6335 0.8058	24 30 22 26 30 30 146 238 85 48 50 29.5	1260 441 147 110 100 308 1850 3440 3275 1320 540 766.5	90.3 69.28 51.95 48 55.85 129.5 652.3 1550 833.8 238.5 195	0.8007 0.817 0.5255 0.5969 0.4528 1.014 0.5772 0.6274 1.441 0.9224 0.4667 0.55	35.5 29.05 18 19 20.5 39.4 154.5 286 52.8 82.5 24.9 30.65	471 334 180 150 140 558 1530 4020 2985 999 651 407	67.58 51.5 44 41.79 69.58 391.2 1212 911.6 233.8 159.5 96.48	109.3 80 60 51.21 56.05 99.21 794.1 1935 1599 380.8 252.8 165.2	0.1742 0.2199 -0.3111 -0.452 -0.452 -0.3737 0.4091 0.09596 -0.3737 -0.2172 0.09596
Parameter Group #2 1-day minimum 3-day minimum 7-day minimum 30-day minimum 90-day minimum 1-day maximum 3-day maximum 3-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum	34 35.67 37.43 42.38 46.63 2935 2787 2458 1965 1313 0	0.5147 0.5093 0.4981 0.3995 0.4518 0.7871 0.7395 0.7419 0.722 0.8212 0 0.6648	11 13 17.43 21.5 27.52 385 340.3 312.1 257.6 183.1 0	75 80 82.86 84.67 101.7 6950 6240 5613 3890 2464 0	35 37.5 39.5 45.35 51.07 2645 2450 2258 1845 1117 0	0.7457 0.6998 0.7055 0.6594 0.5517 0.6153 0.6469 0.5815 0.5343 0.7414 0	10.3 12.9 15.59 17.67 19.7 444 401 360 332.2 216.8 0	89 89 95 125.6 155.3 5540 5480 5151 3872 2138 0	29 30.26 33.79 38.03 43.41 2247 2146 1994 1566 975.1 0	36.63 40 43.6 45.84 52.46 3605 3442 3121 2461 1693 0	-0.713 -0.5507 -0.2955 -0.6086 -0.6086 0.09596 0.1742 0.2525 0.2525 0.2525 0.2525
Parameter Group #3 Date of minimum Date of maximum	346.5 139.5	0.14 0.05191	1 110	366 263	362.5 142	0.1728 0.0485	6 106	364 167	63.79 133.6	328.1 148.2	-0.452 0.09596
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration The low pulse threshold is The high pulse threshold is	4.5 4.25 3 9	1.333 1.588 0.6667 4.361	0 1 0 1 55 388	19 90 8 100	3 4 2.5 9	2 1.406 0.8 4.403	0 1 1 1.5	10 125 9 100	2 3 2 3.5	7 8 4 36.58	-0.09105 0.2729 0.03333 0.2525
Parameter Group #5 Rise rate Fall rate Number of reversals	14.5 -13 113	1.078 -0.7788 0.2434	4 -108.5 50	200 -5 138	11.75 -10.45 110	1.087 -0.6459 0.2023	2 -29 87	40 -3.65 139	11 -18.21 101	19.21 -10.4 119	-0.2824 0.01768 0.04831
Assessment of Hydrologic Altera	ation Middle RVA Category Expected Obse	rved Alter.	High RVA (Expected	Category Observed	Alter.	Low RVA (Expected	Category Observed	Alter.			
Parameter Group #1 October November December January February March April May June July August September	12.77 13.94 14.52 12.77 12.77 12.77 12.77 12.77 12.77 12.77 12.77	15 17 10 7 7 7 8 18 14 8 10 14 15	0.1742 0.2199 -0.3111 -0.452 -0.452 -0.3737 0.4091 0.09596 -0.3737 -0.2172 0.09596 0.1742	11.61 11.03 10.45 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61	14 13 14 16 17 22 11 11 9 9 7	0.2056 0.1784 0.3395 0.3778 0.4639 0.8944 -0.05278 -0.05278 -0.225 -0.225 -0.3972 0.4639	11.61 11.03 11.03 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61	7 6 12 13 12 6 7 11 19 17 15 4	-0.3972 -0.4561 0.08772 0.1194 0.03333 -0.4833 -0.3972 -0.05278 0.6361 0.4639 0.2917 -0.6556		
Parameter Group #2 1-day minimum 3-day minimum 7-day minimum 90-day minimum 90-day minimum 1-day maximum 1-day maximum 7-day maximum 90-day maximum 90-day maximum 90-day maximum Number of zero days Base flow index	13.94 13.35 12.77 12.77 12.77 12.77 12.77 12.77 12.77 12.77	4 6 9 5 5 14 15 16 16 16 36	-0.713 -0.5507 -0.2955 -0.6086 -0.6086 -0.1742 0.2525 0.2525 0.2525 0.2525	11.61 11.03 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61 0	17 15 13 18 17 9 9 9 7 7 9	0.4639 0.3596 0.1194 0.55 0.4639 -0.225 -0.225 -0.225 -0.3972 -0.225	10.45 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61 11.61 0	15 15 14 13 14 13 12 11 13 11 0	0.4352 0.2917 0.2056 0.1194 0.2056 0.1194 0.03333 -0.05278 0.1194 -0.05278		
Parameter Group #3 Date of minimum Date of maximum	12.77 12.77	7 14	-0.452 0.09596	11.61 11.61	14 12	0.2056 0.03333	11.61 11.61	15 10	0.2917 -0.1389		
Parameter Group #4 Low pulse count Low pulse duration High pulse count High pulse duration	20.9 13.35 23.23 12.77	19 17 24 16	-0.09105 0.2729 0.03333 0.2525	9.29 9.871 7.548 11.61	6 5 7 10	-0.3542 -0.4935 -0.07265 -0.1389	5.806 9.29 5.226 11.03	11 8 5 10	0.8944 -0.1389 -0.04321 -0.09357		
Parameter Group #5 Rise rate Fall rate Number of reversals	13.94 12.77 13.35	10 13 14	-0.2824 0.01768 0.04831	11.61 11.61 11.03	9 18 9	-0.225 0.55 -0.1842	10.45 11.61 11.61	17 5 13	0.6265 -0.5694 0.1194		

IHA Percentile Data

DoloresRiverAtDoloresCO_v2

	Pre-impact period: 1922-1983 (62 years)					Pos	st-impact period: 1984					
	10% 259		Impact 75%	90%	/75	25)/50 10	% 25%	Post-Impa 50%	t 75%	90%	(75	-25)/50
Parameter Group #1	10% 25	% 50%) /5%	90%	(/5	25)/50 10	% 25%	50%	/5%	90%	(/5	-25)/50
October	44.2	62.5	81	153	241.2	1.117	57.9	69.2	90.3	141.5	209.9	0.8007
November	43.1	49	60.75	90.13	140.6	0.677	38.49	54.4	69.28	111	130.9	0.817
December	34	40	48	64.25	88.7	0.5052	25.54	41.7	51.95	69	91.41	0.5255
January	33	40	45	55.25	75	0.3389	28.1	36	48	64.65	79.3	0.5969
February	34.75	40	50	65	83.5	0.5	31.9	40.24	55.85	65.52	97.7	0.4528
March	54.3	60.75	80	106.3	152.8	0.5688	59.41	81.5	129.5	212.8	371.6	1.014
April	204.1	276.3	534	892.1	1188	1.153	284.7	462	652.3	838.5	1190	0.5772
May	688.6	1038	1630	2203	2839	0.7147	745.4	1113	1550	2085	2552	0.6274
June	425.5	751.5	1168	2031	2635	1.096	181.9	420.9	833.8	1623	2082	1.441
July	151	204.8	296 221	422.3 272	823.5	0.7348	131 102.4	168.5	238.5 195	388.5 230.5	517.1	0.9224
August September	84.3 57.9	132 80.5	121	178	394 295.9	0.6335 0.8058	76.07	139.5 119.6	137.5	195.3	346 272.9	0.4667 0.55
Зерсение	37.5	00.5	121	170	253.5	0.0036	70.07	115.0	137.3	155.5	2/2.5	0.33
Parameter Group #2												
1-day minimum	19	27.5	34	45	50	0.5147	11.57	21.4	35	47.5	64.3	0.7457
3-day minimum	22.03	29.33	35.67	47.5	54.73	0.5093	17.11	22.73	37.5	48.97	66.47	0.6998
7-day minimum	25.46	30.57	37.43	49.21	57.06	0.4981	20.61	25.32	39.5	53.19	72.16	0.7055
30-day minimum	29.58	35.33	42.38	52.27	66.52	0.3995	23.49	29.89	45.35	59.79	79.46	0.6594
90-day minimum	31.94	40.6	46.63	61.67	79.44	0.4518	30.36	37.89	51.07	66.07	81.76	0.5517
1-day maximum	1463	1865	2935	4175	5158	0.7871	1300	1980	2645	3608	4375	0.6153
3-day maximum	1301	1833	2787	3894	4799	0.7395	1242	1925	2450	3510	4265	0.6469
7-day maximum	1180	1666	2458	3489	4145	0.7419	1089	1848	2258	3161	4103	0.5815
30-day maximum	897.6	1308	1965	2727	3320	0.722	871.6	1350	1845	2336	3122	0.5343
90-day maximum	596	836.1	1313	1914	2229	0.8212	541.4	889.1	1117	1717	1976	0.7414
Number of zero days	0 0.06108	0 06701	0 0.09792	0 0.1329	0 0.1762	0 0.6648	0 0.05761	0 0.07885	0 0.1091	0 0.1419	0 0.1589	0 0.5774
Base flow index	0.00106	0.06781	0.09792	0.1329	0.1762	0.0046	0.05/61	0.07000	0.1091	0.1419	0.1569	0.5//4
Parameter Group #3												
Date of minimum	262.3	323.3	346.5	8.5	52.4	0.14	271.9	333.3	362.5	30.5	51.2	0.1728
Date of maximum	125	131	139.5	150	160.7	0.05191	125.7	132	142	149.8	158.9	0.0485
Parameter Group #4												
Low pulse count	0.3	2	4.5	8	11	1.333	0	1	3	7	8	2
Low pulse duration	1	2.125	4.25	8.875	37.35	1.588	1.1	2.375	4	8	9.9	1.406
High pulse count	1	2	3	4	6	0.6667	1	2	2.5	4	7.3	0.8
High pulse duration	2	3	9	42.25	66.5	4.361	2	3	9	42.63	70.6	4.403
Parameter Group #5												
Rise rate	8	10	14.5	25.63	49.5	1.078	4.41	6.975	11.75	19.75	29.3	1.087
Fall rate Number of reversals	-38.2 63.3	-20 93.5	-13 113	-9.875 121	-8 128.7	-0.7788 0.2434	-22.4 88	-14.75 97.25	-10.45 110	-8 119.5	-6 125.3	-0.6459 0.2023
Nulliber of reversals	03.3	55.5	113	121	120.7	0.2434	00	37.23	110	115.5	123.3	0.2023
EFC Monthly Low Flows												
October Low Flow	49	62	80	127.5	204.2	0.8188	58.14	69.2	90.3	141.5	209.9	0.8007
November Low Flow	48.2	51.75	63.5	90.25	141.7	0.6063	51.36	59	70	111	131.2	0.7429
December Low Flow	44	46.38	51	65.75	92	0.3799	46.02	50	60	73	93.76	0.3833
January Low Flow	42	45	50	62	80	0.34	42.53	44.53	53.5	66.28	79.9	0.4065
February Low Flow	44.4	48	55	68	85.3	0.3636	43.34	48.9	58	80	107.6	0.5362
March Low Flow	55.2	67	84	107.5	148	0.4821	63.63	81.5	114	140.8	209.2	0.5197
April Low Flow	134.6	162	209	293.6	326.1	0.6298	148.7	183.6	244.5	305	346.1	0.4964
May Low Flow	222.7	270.3	323	370.3	382.7	0.3096	227	227	286	312	312	0.2972
June Low Flow	168.8	240.8	292	325.8	352	0.2911	84.49	189.4	258.3	306	370.5	0.4516
July Low Flow	148	204	269	328	361.5	0.461	136.8	170	236.3	318.4	355.6	0.628
August Low Flow September Low Flow	87.2 65.3	132 89	214 121	257.5 168.8	303.2 243.7	0.5864 0.6591	101.2 95.94	137 119.6	191 133.3	229 180.8	298 239.1	0.4817 0.4587
September Low Flow	03.3	09	121	100.0	243.7	0.0591	93.94	119.0	133.3	100.0	239.1	0.4367
EFC Flow Parameters												
Extreme low peak	29.6	33.75	38	39.75	40	0.1579	23.27	28.93	35.5	38.2	40	0.2613
Extreme low duration	1	2	3	5.5	24.6	1.167	1	1.25	4	6	50.7	1.188
Extreme low timing	260.6	330.3	349	4	31.7	0.1086	310.9	340	364	29	37.4	0.1503
Extreme low freq.	0	0	3.5	6	11	1.714	0	0	2	4.75	7	2.375
High flow peak	411.1	441.6	501	949	1704	1.013	423	460	665	1343	1638	1.328
High flow duration	1	2	3	10.38	52.15	2.792	1.5	2	5	34	68.2	6.4
High flow timing	103.4	132.8	189	222.3	242.8	0.2445	99.4	125.5	183	213	250.5	0.2391
High flow frequency	1	1	3	4	5.7	1	1	2	2	3.75	7	0.875
High flow rise rate	30.1	51.97	81.49	130.1	191.3	0.9591	31.68	48.03	72.36	102	216.4	0.7459
High flow fall rate	-114.9	-89.13	-65.5	-44.17	-34.63	-0.6864	-107	-75.25	-58.5	-46.39	-31.37	-0.4934
Small Flood peak	3013 32.85	3180 82.5	3880 96	4315	4834 111	0.2925 0.2266	2990 84	3088 88.5	3835 104	4173 111	4825 122	0.2829 0.2163
Small Flood duration Small Flood timing	32.85 124.4	82.5 131.8	96 142	104.3 152	111 213.3	0.2266	84 127	88.5 133.5	104 143	111 151.8	122 164	0.2163
Small Flood timing Small Flood freq.	124.4	131.8	142	152	213.3	0.05533	0	133.5	0	151.8	164	0.04986
Small Flood riserate	61.96	78.94	94.57	171.4	606.7	0.9776	44.99	59.06	67.64	90.32	96.82	0.4622
Small Flood fallrate	-180.4	-79.76	-65.24	-50.39	-40.32	-0.4503	-94.7	-89.05	-61.38	-52.72	-43.81	-0.592
Large flood peak	5200	5268	5775	6650	6950	0.2394	54.7	05.05	5540	J2./ 2	.5.01	0.552
Large flood duration	84	93	101.5	131.3	135	0.2354			99			
Large flood timing	126	132.8	155	173.5	181	0.1113			145			
Large flood freq.	0	0	0	0	0.7	0	0	0	0	0	0	0
Large flood riserate	55.94	75.53	105.3	336.3	411.6	2.478			110.1			
Large flood fallrate	-284.7	-209.8	-87.72	-65.8	-52.8	-1.642			-97.74			

6 Messages:

The longest period of missing data is 42 days.

Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.

42 daily values have been interpolated in year 2019

Warning: For two-period analyses, IHA re-assigns each daily flow value into a new EFC category.

Therefore, post-impact EFC magnitude values (e.g. monthly low flows) are not directly comparable to the pre-impact values.

To compare pre- to post-impact flow magnitudes, use IHA parameter groups #1 and #2 instead of EFCs.

SanMiguelRiverNearPlacervilleCO_v2

Pre-impact period: 1942-1983 (42 y	ears)	Post-impact period: 1984-2019 (36 years				
NormalizationFactor	1	1				
Mean annual flow	233.1	239.6				
Non-Normalized Mean Flow	233.1	239.6				
Annual C. V.	1.25	1.19				
Flow predictability	0.62	0.61				
Constancy/predictability	0.59	0.58				
% of floods in 60d period	0.47	0.47				
Flood-free season	158	154				

	MEDIANS Pre Post	COEF Pre	FF. of DISP.		/IATION FACTOR dians C.D.	SIGN Med	NIFICANCE COUNT ians C.D.	
Parameter Group #1 October November	93.5 78.5	105.5 86.2	0.4305 0.3503	0.6246 0.3238	0.1283 0.09809	0.451 0.07567	0.1241 0.3413	0.2563 0.7878
December	65	63	0.3308	0.407	0.03077	0.2305	0.6146	0.1802
January	61.5 60	59 62.68	0.1748 0.1979	0.4174 0.3779	0.04065 0.04458	1.388 0.9096	0.5616 0.3644	0.002002 0.01201
February March	61.5	85.5	0.1979	0.4956	0.3902	1.032	0.00	0.008008
April	145.3	222	0.7676	0.6098	0.5284	0.2056	0.001001	0.4645
May	487 752	499.5 766.5	0.6473	0.525	0.02567	0.1889	0.9029 0.9019	0.5596 0.9289
June July	354	345	0.7264 0.8453	0.7397 1.053	0.01928 0.02542	0.01835 0.2455	0.8989	0.3233
August	180	185.5	0.7361	0.5647	0.03056	0.2329	0.8258	0.4655
September	111	123.8	0.482	0.5788	0.1149	0.2008	0.1962	0.7618
Parameter Group #2	44	44.05	0.222	0.4260	0.001136	0.8321	0.959	0.01201
1-day minimum 3-day minimum	47.5	46.78	0.233 0.2404	0.4268 0.4111	0.001136	0.8321	0.959	0.01301 0.009009
7-day minimum	50.21	49.43	0.2589	0.4403	0.01565	0.7008	0.7177	0.004004
30-day minimum	55.37 60.49	53.42 61.09	0.1934 0.2205	0.3771 0.3497	0.03522	0.9497 0.5855	0.5495 0.9039	0.002002
90-day minimum 1-day maximum	1155	1235	0.5673	0.4951	0.009836 0.06926	0.1272	0.5676	0.01902 0.4805
3-day maximum	1112	1192	0.5609	0.4886	0.07196	0.129	0.4555	0.4625
7-day maximum 30-day maximum	1009 798.3	1131 873.7	0.5865 0.6569	0.4456 0.4905	0.1209 0.09448	0.2402 0.2533	0.4374 0.4985	0.2803 0.2653
90-day maximum	603.2	607.2	0.6289	0.5244	0.006715	0.1662	0.8579	0.5936
Number of zero days	0	0	0	0				
Base flow index	0.2474	0.208	0.5247	0.4104	0.1593	0.2179	0.1752	0.3483
Parameter Group #3 Date of minimum	24.5	20	0.1154	0.1974	0.02459	0.7101	0.6206	0.01101
Date of maximum	161	154.5	0.05806	0.04508	0.03552	0.2235	0.1001	0.3814
Parameter Group #4								
Low pulse count Low pulse duration	7.5 4	4 3.5	0.9667 1.281	1.25 1.5	0.4667 0.125	0.2931 0.1707	0.03303 0.5445	0.3564 0.6677
High pulse count	3	3	0.75	1	0	0.3333	0.1852	0.3343
High pulse duration	7.5	5	6.15	7	0.3333	0.1382	0.3323	0.7217
Low Pulse Threshold High Pulse Threshold	65 271							
Parameter Group #5								
Rise rate Fall rate	7.5 -8	7 -6.75	0.5333 -0.5	0.6714 -0.737	0.06667 0.1563	0.2589 0.4741	0.5455 0.2182	0.2422 0.03003
Number of reversals	125.5	124	0.1355	0.1633	0.01195	0.2056	0.7237	0.4755
EFC Low flows								
October Low Flow November Low Flow	93.5 78.5	105.5 86.2	0.4305 0.3376	0.6246 0.3173	0.1283 0.09809	0.451 0.06012	0.1241 0.3283	0.2593 0.8128
December Low Flow	65	70.2	0.2577	0.2949	0.08	0.1443	0.1692	0.5235
January Low Flow	65	67.1	0.1538	0.2712	0.03231	0.763	0.07407	0.02202
February Low Flow March Low Flow	63.25 65	67.5 85.5	0.1581 0.2231	0.2444 0.4637	0.06719 0.3154	0.5461 1.079	0.1341 0.00	0.08609 0.006006
April Low Flow	121	158	0.5465	0.6503	0.3058	0.19	0.009009	0.4975
May Low Flow	215	230.5	0.2302	0.1746	0.07209	0.2415	0.4014	0.4324
June Low Flow July Low Flow	252 201.5	206.5 193.8	0.251 0.2531	0.434 0.451	0.1806 0.03846	0.7292 0.7818	0.3734 0.6426	0.2172 0.04104
August Low Flow	176.5	167.3	0.4873	0.5284	0.05241	0.08445	0.7838	0.8308
September Low Flow	111	122.3	0.473	0.2853	0.1014	0.3968	0.1902	0.3794
EFC Parameters Extreme low peak	50.75	47.15	0.07882	0.2185	0.07094	1.772	0.00	0.002002
Extreme low duration	3	5.5	0.6667	5.432	0.8333	7.148	0.005005	0.002002
Extreme low timing	23	13.75	0.111	0.1482	0.05055	0.3354	0.1461	0.3423
Extreme low freq. High flow peak	5 365.5	2 349.8	1.45 0.6005	1.75 0.4149	0.6 0.04309	0.2069 0.3091	0.2613 0.5516	0.6076 0.6066
High flow duration	5	3.75	4.2	1.3	0.25	0.6905	0.3744	0.2302
High flow timing High flow frequency	182	175.8 3	0.1995 1.5	0.2182 0.9167	0.03415 0.5	0.09418 0.3889	0.6827 0.005005	0.5986 0.4535
High flow rise rate	42.11	49.65	1.086	0.7624	0.1792	0.2982	0.2462	0.2893
High flow fall rate	-30	-38.93	-0.8542	-0.574	0.2976	0.328	0.05906	0.1071
Small Flood peak Small Flood duration	1430 89	1430 101	0.2552 0.5478	0.1329	0 0 1348	0.4795 0.3674	0.957 0.2673	0.3053
Small Flood timing	163	159	0.06421	0.02732	0.02186	0.5745	0.3433	0.08609
Small Flood freq.	0	20.26	0	0.422	0.06150	0.5700	0.7117	0 5145
Small Flood riserate Small Flood fallrate	31.29 -27.64	29.36 -20.87	1.026 -0.7129	0.432 -0.5496	0.06159 0.245	0.5789 0.2291	0.7117 0.2162	0.5145 0.5195
Large flood peak	2090	2400	0.25		0.1483		0.2222	
Large flood duration Large flood timing	109.5 176	138 136	0.1279 0.02254		0.2603 0.2186		0.00 0.00	
Large flood freq.	0	0	0.02234	0	0.2100		0.00	
Large flood riserate Large flood fallrate	31.04 -37.44	66.56 -20	0.3432 -0.0962		1.144 0.4658		0.00 0.02703	
EFC low flow threshold: EFC high flow threshold:		271						
EFC extreme low flow threshold	i:	55						
EFC small flood minimum peak EFC large flood minimum peak		1155 2035						

	Pre-impact period: 19	942-1983		Post-impa	t period: 1984-20	019					
		oeff. of			Coeff. o	f			oundaries		rologic Alteratic
	Medians D	Dispersion Minir	num Maximu	ım Medians	Dispersi	on Minimu	ım Maximum	Low	High	(Mid	idle Category)
Parameter Group #1											
October	93.5	0.4305	50	174	105.5	0.6246	60	217	80	104.8	-0.1444
November	78.5	0.3503	55.5	124	86.2	0.3238	49.2	140	68.38	87.5	-0.1444
December	65	0.3308	38	123	63	0.407	40.7	107	60	72.81	-0.4896
January	61.5 60	0.1748	38	123	59	0.4174	38.3	100 95	57.57 55	65	-0.6759
February March	61.5	0.1979 0.2439	44 47	123 123	62.68 85.5	0.3779 0.4956	37 51.9	207	58.19	64.22 69.43	-0.287 -0.3333
April	145.3	0.7676	73.5	610	222	0.6098	90.3	512	127.7	188.3	-0.4167
May	487	0.6473	124	1530	499.5	0.525	175	1700	402.4	531.8	-0.4167
June	752	0.7264	253.5	1420	766.5	0.7397	134	1430	576.2	967.7	-0.08333
July	354	0.8453	99	1080	345	1.053	63.4	1120	263.8	456.3	-0.25
August	180	0.7361	80	476	185.5	0.5647	53.4	496	154.6	224.4	0.25
September	111	0.482	60.5	298	123.8	0.5788	52.9	358	98.57	123.8	-0.08333
Parameter Group #2											
1-day minimum	44	0.233	26	113	44.05	0.4268	26.2	70	40	50	-0.5435
3-day minimum	47.5	0.2404	30	117	46.78	0.4111	29.7	73.67	43.46	52.54	-0.25
7-day minimum	50.21	0.2589	31.14	123	49.43	0.4403	32.2	76.43	47.86	53.4	-0.6111
30-day minimum	55.37	0.1934	34.93	123	53.42	0.3771	36.67	86	51.45	60.26	-0.5833
90-day minimum	60.49	0.2205	40.54	123	61.09	0.3497	41.36	93.24	55.47	63.36	-0.6667
1-day maximum	1155	0.5673	376	2740	1235	0.4951	354	2400	912.7	1360	-0.1444
3-day maximum	1112	0.5609	349	2617	1192	0.4886	303	2273	870	1317	0
7-day maximum	1009	0.5865	325.7	2386	1131	0.4456	241.7	2017	808.4	1208	0.08333
30-day maximum 90-day maximum	798.3 603.2	0.6569 0.6289	231.7 158.1	1677 1219	873.7 607.2	0.4905 0.5244	210.7 158.6	1679 1155	637.8 442.5	1046 685.4	0.5 0.3333
Number of zero days	005.2	0.0209	0	0	007.2	0.3244	0	0	0	005.4	0.5555
Base flow index	0.2474	0.5247	0.1037	0.4027	0.208	0.4104	0.1193	0.487	0.1991	0.2806	0.1667
		******	- × = -			- **					/
Parameter Group #3											
Date of minimum	24.5	0.1154	1	364	20	0.1974	12	361	30.38	63.62	-0.08333
Date of maximum	161	0.05806	135	250	154.5	0.04508	120	255	154.6	165.8	-0.08333
Parameter Group #4											
Low pulse count	7.5	0.9667	0	19	4	1.25	0	13	5.19	11	-0.02778
Low pulse duration	7.5	1.281	1	29.5	3.5	1.5	1	120	3.19	6	-0.1574
High pulse count	3	0.75	1	8	3	1	1	9	2	4	0.1181
High pulse duration	7.5	6.15	1	124	5	7	1	119	5.595	33.22	-0.4167
The low pulse threshold is			65								
The high pulse threshold is			271								
Parameter Group #5 Rise rate	7.5	0.5333	5	30	7	0.6714	0.45	20	7	9.405	-0.4556
	7.5 -8					-0.737			-9	9.405 -7	-0.5882
Fall rate Number of reversals		-0.5 0.1355	-26 65	-4 149	-6.75 124		-18 81	-2.6 159			
Number of reversals	125.5	0.1355	65	-4 149	124	0.1633	-18 81	159	122	134.9	-0.06667
	125.5 eration	0.1355	65	149		0.1633	81				
Number of reversals	125.5 eration Middle RVA Category	0.1355	65 High R\	149 VA Category	124	0.1633 Low R\	81 /A Category	159			
Number of reversals Assessment of Hydrologic Alturn	125.5 eration Middle RVA Category	0.1355	65 High R\	149 VA Category		0.1633	81 /A Category				
Number of reversals Assessment of Hydrologic Altuer Parameter Group #1	125.5 eration Middle RVA Category Expected C	0.1355 Dbserved Alter	65 High R\ . Expecte	149 VA Category ed Observed	124 Alter.	0.1633 Low R\ Expect	81 /A Category ed Observed	159 Alter.	122		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October	125.5 eration Middle RVA Category Expected C	0.1355 Observed Alter	65 High R\ . Expecte	149 VA Category ed Observed	124 Alter. 19	0.1633 Low R\ Expect	7A Category ed Observed	159	122 -0.4615		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November	125.5 eration Middle RVA Category Expected C 12.86 12.86	0.1355 Observed Alter	. High R\ . Expects -0.1444 -0.1444	149 VA Category ed Observed 12 11.14	124 Alter. 19 17	0.1633 Low R\ Expect 0.5833 0.5256	VA Category ed Observed 11.14 12	159 Alter. 6 8	-0.4615 -0.3333		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October	125.5 eration Middle RVA Category Expected C	0.1355 Observed Alter	65 High R\ . Expecte	149 VA Category ed Observed	124 Alter. 19	0.1633 Low R\ Expect	7A Category ed Observed	159 Alter. 6	122 -0.4615		
Number of reversals Assessment of Hydrologic Alt Parameter Group #1 October November December	125.5 eration Middle RVA Category Expected C 12.86 12.86 13.71	0.1355 Observed Alter 11 11 7	65 High R\ Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287	149 VA Category Observed 12 11.14 12 8.571 12	124 Alter. 19 17 13 14 16	0.1633 Low R\ Expect 0.5833 0.5256 0.08333	81 /A Category ed Observed 11.14	159 Alter. 6 8 16	-0.4615 -0.3333 0.5556 0.4167 0.05		
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43	0.1355 bbserved Alter 11 11 7 5 11 8	65 High RV Expects -0.1444 -0.1494 -0.6759 -0.287 -0.3333	149 VA Category Observed 12 11.14 12 8.571 12	Alter. 19 17 13 14 16 26	0.1633 Low RV Expect 0.5833 0.5256 0.08333 0.6333 0.3333 1.167	81 VA Category ed Observed 11.14 12 10.29 12 8.571 12	159 Alter. 6 8 16 17 9 2	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333		
Number of reversals Assessment of Hydrologic Altr Parameter Group #1 October November December January February March April	125.5 eration Middle RVA Category Expected 12.86 13.71 15.43 15.43 12 12	0.1355 observed Alter 11 11 7 5 11 8 7	65 High RR Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167	149 VA Category dd Observed 12 11.14 12 8.571 12 12 12	Alter. 19 17 13 14 16 26 23	0.1633 Low R\ Expect 0.5833 0.5256 0.08333 0.6333 0.3333 1.167 0.9167	81 /A Category observed 11.14 12 10.29 12 8.571 12 12	Alter. 6 8 16 17 9 2 6	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.55		
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April May	125.5 eration Middle RVA Category Expected C 12.86 12.86 13.71 15.43 15.43 12.2 12 12 12 12	0.1355 observed Alter 11 17 7 5 11 8 7 7	65 High RV Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17	0.1633 Low R ¹ Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167	81 /A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12	Alter. 6 8 16 17 9 2 6 12	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5		
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April May June	125.5 eration Middle RVA Category Expected 12.86 13.71 15.43 15.43 12 12 12 12	0.1355 observed Alter 11 17 5 11 8 7 7 11	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.4167	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13	0.1633 Low RV Expect 0.5256 0.08333 0.6333 0.3333 1.167 0.9167 0.4167 0.08333	81 /A Category ed 11.1.14 12 10.29 12 8.571 12 12 12 12	Alter. 6 8 16 17 9 2 6 12	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July	125.5 eration Middle RVA Category Expected 12.86 13.71 15.43 15.43 12 12 12 12 12	0.1355 bbserved Alter 11 11 7 5 11 8 7 7 11 9	65 High RN Expecte -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25	149 VA Category ed Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17	0.1633 Low R ¹ Expect 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12	Alter. 6 8 16 17 9 2 6 12 12	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0		
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April May June	125.5 eration Middle RVA Category Expected 12.86 13.71 15.43 15.43 12 12 12 12	0.1355 observed Alter 11 17 5 11 8 7 7 11	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.4167	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12	0.1633 Low RV Expect 0.5256 0.08333 0.6333 0.3333 1.167 0.9167 0.4167 0.08333	81 /A Category ed 11.1.14 12 10.29 12 8.571 12 12 12 12	Alter. 6 8 16 17 9 2 6 12	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12 12 12 12 12 12 12 12	0.1355 observed Alter 11 11 7 5 11 8 7 7 11 9 15	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.4167 -0.08333 -0.25 -0.25	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7	0.1633 Low Ri Expect 0.5833 0.5256 0.08333 0.3333 1.167 0.9167 0.4167 0.08333 0 -0.4167	81 //A Category ed Observed 11.1.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0.25		
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April May June July August September Parameter Group #2	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12 12 12 12 12 12 12 12	0.1355 observed Alter 11 11 7 5 11 8 7 7 11 9 15	-0.1444 -0.1444 -0.1444 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18	0.1633 Low Ri Expect 0.5833 0.5256 0.08333 0.3333 1.167 0.9167 0.4167 0.08333 0 0.03336	81 /A Category ed Observed 11.1.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12	Alter. 6 8 16 17 9 2 6 12 12 15 14 7	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.04167 0.08333 0.04167 0.05	81 /A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 17.714	159 Alter. 6 8 16 17 9 2 6 12 12 12 17 15	-0.4615 -0.3333 0.5556 0.4167 -0.05 -0.833 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum	125.5 eration Middle RVA Category Expected 12.86 13.71 15.43 15.43 15.43 12 12 12 12 12 12 12 12 12 12 12 12 12	0.1355 observed Alter 11 11 7 5 11 8 7 7 11 9 15 11	High RN Expects -0.1444 -0.1444 -0.1444 -0.6759 -0.287 -0.3333 -0.4167 -0.4167 -0.08333 -0.25 -0.25 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18	0.1633 Low Rt Expect 0.5833 0.5256 0.08333 0.6333 0.3333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5	81 /A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 6 8 16 17 9 2 6 6 12 12 15 15 15 15	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 7-day minimum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18	0.1633 Low RY Expect 0.5833 0.5256 0.08333 0.6333 0.3333 1.167 0.9167 0.08333 0.4167 0.08333 0.04167 0.05	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 11 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.833 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 30-day minimum	125.5 eration Middle RVA Category Expected 12.86 13.71 15.43 15.43 15.43 12 12 12 12 12 12 12 12 12 12 12 12 12	0.1355 observed Alter 11 11 7 5 11 8 7 7 11 9 15 11	High RN Expects -0.1444 -0.1444 -0.1444 -0.6759 -0.287 -0.3333 -0.4167 -0.4167 -0.08333 -0.25 -0.25 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18	0.1633 Low Rt Expect 0.5833 0.5256 0.08333 0.6333 0.3333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5	81 /A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 6 8 16 17 9 2 6 6 12 12 15 15 15 15	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 30-day minimum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12 12 12 12 12 12 12 12 12 12 12 12 12	0.1355 observed Alter 11 11 7 5 11 8 7 7 11 9 15 11	65 High RN Expects -0.1444 -0.1444 -0.1444 -0.26759 -0.287 -0.3333 -0.4167 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18	0.1633 Low Ri Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25	81 //A Category ed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 6 8 16 17 9 2 6 12 12 15 14 7 7 15 15 17 16	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 30-day minimum	125.5 eration Middle RVA Category Expected 12.86 12.86 12.86 12.81 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11	65 High RN Expecte -0.1444 -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.5833 -0.5435 -0.5833 -0.5833 -0.6667	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17	0.1633 Low RV Expect 0.5833 0.5256 0.08333 0.3333 1.167 0.9167 0.4167 0.08333 0.4167 0.55 0.4167 0.50 0.4167	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 15	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 12.86 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 9 4 11 12 13	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6667 -0.1444 -0.08333	149 VA Category ed Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 15 14 15 17 15 14	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0.04167 0.5 0.4167 0.5 0.4167 0.25 0.4167 0.25 0.4167 0.3333	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 15 15 15 15 17 16 15 10 10 7	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 90-day minimum 90-day minimum 1-day maximum 3-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Observed Alter 11 11 7 5 11 8 7 7 11 9 15 11 9 9 5 4 11 12 13	65 High RN Expects -0.1444 -0.1444 -0.1444 -0.26759 -0.287 -0.3333 -0.4167 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.25 -0.1444 -0.8333 -0.6667 -0.1444 -0.08333 -0.5	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17 15 17 15 14 16 12	0.1633 Low Rt Expect 0.5833 0.5256 0.08333 0.6333 0.3333 1.167 0.9167 0.4167 0.05 0.4 0 0.1667 0.25 0.4167 0.25 0.4167 0.3462 0.1667	81 //A Category ed 11.1.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 6 8 8 16 17 9 2 6 12 12 15 14 7 7 15 15 17 16 15 10 10 7 6	-0.4615 -0.3333 -0.5566 -0.4167 -0.05 -0.8333 -0.5 0 0 0.25 -0.4167 -0.4167 -0.4167 -0.1667 -0.1667 -0.1667 -0.1667		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 1-day maximum 3-day maximum 3-day maximum 3-day maximum 30-day maximum 30-day maximum 30-day maximum 30-day maximum 30-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 9 15 11 11 12 13 18 16	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 -0.08333 -0.6667 -0.14444 -0.08333 -0.5333	149 VA Category ded Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 12	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0.04167 0.5 0.4167 0.5 0.4167 0.25 0.4167 0.25 0.4167 0.3333	81 /A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 10 10 7 6 8	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 90-day minimum 3-day maximum 3-day maximum 30-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Observed Alter 11 11 7 7 5 11 8 7 7 11 9 9 5 5 4 11 12 13 18 16 36	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 -0.08333 -0.50 -0.3333 -0.50 -0.3333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 12 0	0.1633 Low Rt Expect 0.5833 0.5256 0.08333 0.3333 1.167 0.9167 0.04167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3433	81 //A Category ed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 17 16 15 17 16 18 0	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167 0.25 0.256 0.3333 0.25 -0.1667 -0.1667 -0.1667 -0.1667		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 1-day maximum 3-day maximum 3-day maximum 3-day maximum 30-day maximum 30-day maximum 30-day maximum 30-day maximum 30-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 9 15 11 11 12 13 18 16	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 -0.08333 -0.6667 -0.14444 -0.08333 -0.5333	149 VA Category ded Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 12	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0.04167 0.5 0.4167 0.5 0.4167 0.25 0.4167 0.25 0.4167 0.3333	81 /A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 10 10 7 6 8	-0.4615 -0.3333 -0.5566 -0.4167 -0.05 -0.8333 -0.5 0 0 0.25 -0.4167 -0.4167 -0.4167 -0.1667 -0.1667 -0.1667 -0.1667		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 90-day minimum 3-day maximum 3-day maximum 30-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum 90-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Observed Alter 11 11 7 7 5 11 8 7 7 11 9 9 5 5 4 11 12 13 18 16 36	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 -0.08333 -0.50 -0.3333 -0.50 -0.3333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 12 0	0.1633 Low Rt Expect 0.5833 0.5256 0.08333 0.3333 1.167 0.9167 0.04167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3433	81 //A Category ed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 17 16 15 17 16 18 0	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167 0.25 0.256 0.3333 0.25 -0.1667 -0.1667 -0.1667 -0.1667		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 30-day maximum	125.5 eration Middle RVA Category Expected C 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12.	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 11 11 11 11 11 11 11 11 11 11 11	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.5435 -0.25 -0.08333 -0.5435 -0.25 -0.6667 -0.1444 -0.48333 -0.6667 -0.1667	149 VA Category ed Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17 15 14 16 12 17 17 18 18 19 10 11 11 11 11 11 11 11 11 11 11 11 11	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.05	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 15 17 16 15 10 10 7 6 8 0 15	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 30-day minimum 30-day minimum 1-day maximum 1-day maximum 3-day maximum 3-day maximum 90-day minimum 90-day minimum 1-day maximum 80-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 12.86 12.81 13.71 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 9 9 15 11 11 11 11 11 11 11 11 11 11 11 11	. High RN Expecte -0.1444 -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 0 0.08333 0.06667 -0.1446	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17 17 15 14 16 12 17 17 17 17 17 17 17 18 18 19 10 11 11 11 11 11 11 11 11 11 11 11 11	0.1633 Low RV Expect 0.5833 0.5256 0.08333 0.3333 1.167 0.9167 0.4167 0.05 0.4167 0.5 0.4067 0.25 0.4167 0.267 0.3333 0 0 0 -0.4167 0.3462 0.1667 0.3333 0 0 -0.4167	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 8 0 15 10 7 6 8 0 15	-0.4615 -0.3333 -0.5556 -0.4167 -0.05 -0.8333 -0.5 -0.1667 -0.4167 -0.4167 -0.9444 -0.25 -0.255 -0.1667 -0.1667 -0.1667 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 1-day maximum 3-day maximum	125.5 eration Middle RVA Category Expected C 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12.	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 11 11 11 11 11 11 11 11 11 11 11	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.5435 -0.25 -0.08333 -0.5435 -0.25 -0.6667 -0.1444 -0.48333 -0.6667 -0.1667	149 VA Category ed Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17 15 14 16 12 17 17 18 18 19 10 11 11 11 11 11 11 11 11 11 11 11 11	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.05	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 15 17 16 15 10 10 7 6 8 0 15	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 30-day minimum 30-day minimum 30-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 9 5 5 4 11 12 13 18 16 36 14	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 0 0.08333 -0.5 0.3333 -0.6667 -0.1667	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 0 7	0.1633 Low Rit Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 0.08333 0 0.08333 0 0.08333 0 0 0.4167 0.5 0.4167 0.5 0.4167 0.5 0.4167 0.5 0.4167 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 17 16 15 17 16 15 17 18	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167 0.25 0.256 0.3333 0.25 -0.1667 -0.1667 -0.1667 -0.4167		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 30-day minimum 30-day minimum 1-day maximum 1-day maximum 30-day maximu	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 12 13 18 16 36 14 11 11 11 11 11 15	65 High RN Expects -0.1444 -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 0 0.08333 0.5 0.08333 0.5 0.1667	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 0 7 18 7	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 0 0 0.4167 0.5 0.4 0 0 0.1667 0.25 0.4167 0.3533 0 0 0 -0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 10 10 7 6 8 0 15 7 18	-0.4615 -0.3333 -0.5556 -0.4167 -0.05 -0.8333 -0.5 0 0 0 0.25 0.1667 -0.4167 -0.4167 -0.1667 -0.1667 -0.1667 -0.1667 -0.5 -0.3333 -0.25 -0.1667 -0.5 -0.55 -0.1667		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 30-day minimum 30-day maximum 30-day maximu	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 12.12 13.13 15.43	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 9 15 11 12 13 18 16 36 14	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5833 -0.5833 -0.6667 -0.1444 -0.083333 -0.5 -0.3333 -0.6667 -0.083333 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17 15 14 16 16 12 12 17 17 18 18 19 10 10 11 11 11 11 11 11 11 11 11 11 11	0.1633 Low Ri Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3463 0 0 0 0 0 0.4167	81 //A Category ed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 16 15 17 16 18 0 15 17 18	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.5 -0.3333		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 30-day minimum 30-day minimum 1-day maximum 1-day maximum 30-day maximum 30-day minimum 30-day minimum 30-day minimum 30-day minimum 30-day maximum 30-day maximum 30-day maximum 30-day maximum 90-day maximum 90-day maximum 90-day maximum 91-day maximum 90-day maximum	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12 12 12 12 12 12 12 12 12 12 12 12 1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 12 13 18 16 36 14 11 11 11 11 11 15	. High RN Expects -0.1444 -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6667 -0.1444 0.08333 0.5 0.08333 0.5 0.08333 0.5 0.08333 -0.6667	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 0 7 18 7	0.1633 Low R\\ Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0 -0.4167 0.25 0.4167 0.3333 0 0 -0.4167 0.4067 0.25 0.4167 0.4067 0.25 0.4167 0.4067 0.4067 0.4067 0.4067 0.4067 0.4067	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 10 10 7 6 8 0 15 7 18	-0.4615 -0.3333 -0.5556 0.4167 -0.8333 -0.5 0 0 0 0.25 0.1667 -0.4167 -0.25 0.3235 0.25 -0.1667 -0.1667 -0.1667 -0.1667 -0.167 -0.5 -0.3333 0.25 -0.1667 -0.5 -0.3333 0.25		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 30-day minimum 30-day minimum 30-day minimum 90-day minimum 90-day maximum 90-day be count Low pulse duration High pulse count High pulse count High pulse count High pulse count	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 13.66 12.12 12.12 13.66 12.12 12.12 13.66 12.12 12.12 12.12 12.12 12.12 13.66 12.12 12.12 12.12 13.66 14.15 15.43 15.43 15.43	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 12 13 18 16 36 14 11 11 11 11 11 11 11 12 13 18 16 36 14 11 11 11 12 13 18 18 16 36 14 11 11 12 13 18 18 18 18 18 18 18 18 18 18 18 18 18	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5833 -0.5833 -0.6667 -0.1444 -0.083333 -0.5 -0.3333 -0.6667 -0.083333 -0.08333	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 14 15 17 17 18 12 17 18 17 17 17 18 18 17 17 18 18 19 10 10 10	0.1633 Low Ri Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3463 0 0 0 0 0 0.4167	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 8 0 15 17 18 20 11	-0.4615 -0.3333 0.5556 0.4167 0.05 -0.8333 -0.5 0 0 0.25 0.1667 -0.4167 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.1667 -0.5 -0.3333		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 3-day m	125.5 eration Middle RVA Category Expected 12.86 12.86 12.86 13.71 15.43 15.43 12.12 13.60 12.12 12.12 13.61 12.12 12.12 13.61 13.43 15.43 20.57 12.12	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 12 13 18 16 36 14 11 11 11 11 15 13 23 7	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6667 -0.1444 -0.08333 -0.6667 -0.1444 -0.08333 -0.6667 -0.1667	149 VA Category ed Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	124 Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 0 7 18 7	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.04167 0.08333 0.03333 1.167 0.4167 0.5 0.4167 0.5 0.4167 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 10 10 7 6 8 0 15 7 18	-0.4615 -0.3333 -0.5556 -0.4167 -0.05 -0.8333 -0.5 -0.1667 -0.4167 -0.25 -0.1667 -0.16		
Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 30-day minimum 40-day maximum 50-day maximum 50-day maximum 50-day maximum 50-day maximum 50-day maximum 60-day maximum 7-day maximum 80-day maximum 90-day	125.5 eration Middle RVA Category Expected C 12.86 12.86 13.71 15.43 15.43 12.12 12.	0.1355 Observed Alter 11 11 7 7 5 11 8 7 7 11 9 9 5 5 4 11 12 13 18 16 36 14 11 11 15 13 23 7	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 0 0.08333 -0.5 0.3333 -0.6667 -0.1667 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 0 7 18 7	0.1633 Low Rit Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 0.08333 0 0.08333 0 0.08333 0 0 0.08333 0 0 0.08333 0 0 0 0.08333 0 0 0 0 0.08333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81 //A Category ed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 17 16 15 17 18 20 11 3 19	-0.4615 -0.3333 -0.5556 -0.4167 -0.05 -0.8333 -0.5 -0.6667 -0.4167 -0.5 -0.1667 -0.5 -0.5		
Number of reversals Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 1-day maximum 3-day m	125.5 eration Middle RVA Category Expected 12.86 12.86 13.71 15.43 15.43 15.43 12.12 12.1	0.1355 Alter 11 11 7 7 5 11 8 7 7 11 9 15 11 12 13 18 16 36 14 11 11 11 15 13 23 7	65 High RN Expects -0.1444 -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 -0.08333 -0.6667 -0.1444 -0.08333 -0.6667 -0.1444 -0.08333 -0.08333 -0.08333 -0.08333 -0.08333 -0.08333 -0.02778 -0.1574 -0.1181 -0.4167	149 VA Category observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 17 15 14 16 12 0 7 7 18 7	0.1633 Low RN Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.04167 0.08333 0 0 0-0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.3462 0.1667 0.3333 0 0 0 -0.4167 -0.5 0.4167 0.5 0.4167 0.657 0.4167 0.657 0.61667	81 //A Category ed Observed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 12 15 14 7 15 15 17 16 10 10 7 6 8 0 15 17 18	-0.4615 -0.3333 -0.5556 -0.4167 -0.05 -0.8333 -0.5 -0.1667 -0.4167 -0.4167 -0.4167 -0.5 -0.3333 -0.25 -0.1667 -0.4167 -0.5 -0.3333 -0.555 -0.4167 -0.5 -0.3333 -0.555 -0.4167 -0.5 -0.3333		
Assessment of Hydrologic Alto Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 30-day minimum 40-day maximum 50-day maximum 50-day maximum 50-day maximum 50-day maximum 50-day maximum 60-day maximum 7-day maximum 80-day maximum 90-day	125.5 eration Middle RVA Category Expected C 12.86 12.86 13.71 15.43 15.43 12.12 12.	0.1355 Observed Alter 11 11 7 7 5 11 8 7 7 11 9 9 5 5 4 11 12 13 18 16 36 14 11 11 15 13 23 7	65 High RN Expects -0.1444 -0.1444 -0.4896 -0.6759 -0.287 -0.3333 -0.4167 -0.08333 -0.25 -0.08333 -0.25 -0.08333 -0.5435 -0.25 -0.6111 -0.5833 -0.6667 -0.1444 0 0.08333 -0.5 0.3333 -0.6667 -0.1667 -0.08333	149 VA Category and Observed 12 11.14 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	Alter. 19 17 13 14 16 26 23 17 13 12 7 18 12 12 14 15 17 15 14 16 12 12 0 7 18 7	0.1633 Low Ri Expect 0.5833 0.5256 0.08333 0.6333 1.167 0.9167 0.4167 0.08333 0 -0.4167 0.5 0.4 0 0.1667 0.25 0.4167 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667 0.3462 0.1667	81 //A Category ed 11.14 12 10.29 12 8.571 12 12 12 12 12 12 12 12 12 12 12 12 12	159 Alter. 6 8 16 17 9 2 6 12 12 15 14 7 15 15 17 16 15 17 18 20 11 3 19	-0.4615 -0.3333 -0.5556 -0.4167 -0.05 -0.8333 -0.5 -0.6667 -0.4167 -0.5 -0.1667 -0.5 -0.5556		

IHA Percentile Data
SanMiguelRiverNearPlacervilleCO_v2

	Pre-impact period: 1942-1983 (42 years)				Post-in	Post-impact period: 1984-2019 (36 years)						
	10%	Pre 25% 509	-Impact % 75%	90%	(75	25)/50 10%	25%	Post-In 50%	npact 75%	90%	(75	25)/50
Parameter Group #1	10%	25% 50%	% /5%	90%	(/5-	25)/50 10%	25%	50%	/5%	90%	(/5	-25)/50
October	65	69.75	93.5	110	156.2	0.4305	70.99	86.85	105.5	152.8	179.3	0.6246
November	57.8	64	78.5	91.5	115.8	0.3503	53.98	69.21	86.2	97.13	112.8	0.3238
December	52.9	55.75	65	77.25	94.4	0.3308	49.33	51.66	63	77.3	89.3	0.3236
January	47.2	55.75	61.5	65.75	74.4	0.3308	43.23	47.7	59	72.33	82.9	0.4174
										72.33 76.25	82.9 82.3	
February March	48.6 51.6	54.75 56	60 61.5	66.63 71	77.1 81.4	0.1979 0.2439	45.12 62.33	52.56 66.63	62.68 85.5	109	126.7	0.3779 0.4956
April Mav	87.15 235.1	104 327.8	145.3 487	215.5 643	376.6 939.5	0.7676 0.6473	109.3 289.4	156.8 370.8	222 499.5	292.1 633	344.5 834	0.6098 0.525
June	411.2	518.8 208.3	752 354	1065 507.5	1187 848.5	0.7264 0.8453	306.9	510.5 188.8	766.5 345	1078	1230 699.2	0.7397 1.053
July	162						108.6			552		
August	97	129.8 90	180 111	262.3 143.5	328.3 217.8	0.7361 0.482	96	117.5	185.5 123.8	222.3 174.3	319.9	0.5647
September	77.9	90	111	143.5	217.8	0.482	88.09	102.6	123.8	1/4.3	230.4	0.5788
D												
Parameter Group #2 1-day minimum	35	40	44	50.25	60	0.233	28.61	36.2	44.05	55	62	0.4268
			47.5									0.4200
3-day minimum	38.2 40.91	42 44.64	50.21	53.42 57.64	64.03 65.14	0.2404 0.2589	31.98 34.59	39.1 40.4	46.78 49.43	58.33 62.16	66.3 73.4	0.4111
7-day minimum												
30-day minimum	45.56 49.88	50.1 54.18	55.37 60.49	60.81 67.52	68.47 74.68	0.1934 0.2205	41.15 48.09	46.44 51.14	53.42 61.09	66.58 72.5	76.27 80.47	0.3771 0.3497
90-day minimum												
1-day maximum	677	869.8	1155	1525	2035	0.5673	621.6	893.5	1235	1505	1698	0.4951
3-day maximum	647.4	833.9	1112	1458	1944	0.5609	582.9	858.6	1192	1441	1681	0.4886
7-day maximum	615.1	771.3	1009	1363	1765	0.5865	534.4	835.8	1131	1340	1612	0.4456
30-day maximum	500.3	595.7	798.3	1120	1341	0.6569	452.4	678.7	873.7	1107	1318	0.4905
90-day maximum	329.8	422.6	603.2	802	979.6	0.6289	299.9	457.5	607.2	775.9	929.9	0.5244
Number of zero days	0	0	0	0	0	0	0	0	0	0	0	0
Base flow index	0.1426	0.1764	0.2474	0.3062	0.3485	0.5247	0.1529	0.1769	0.208	0.2623	0.3469	0.4104
Parameter Group #3												
Date of minimum	345.9	2.5	24.5	44.75	64.7	0.1154	330.7	345.3	20	51.5	66.9	0.1974
Date of maximum	143.9	149	161	170.3	181.4	0.05806	138.1	146.5	154.5	163	170.3	0.04508
Parameter Group #4												
Low pulse count	2	4	7.5	11.25	13.4	0.9667	1	2	4	7	10	1.25
Low pulse duration	2	2.625	4	7.75	15.3	1.281	1	2	3.5	7.25	56	1.5
High pulse count	1	2	3	4.25	6	0.75	1.7	2	3	5	8	1
High pulse duration	1.65	3.75	7.5	49.88	88.7	6.15	1.5	2.125	5	37.13	81.65	7
Parameter Group #5												
Rise rate	5	6	7.5	10	12	0.5333	3	5.3	7	10	13.2	0.6714
Fall rate	-12	-10	-8	-6	-5	-0.5	-12.15	-10	-6.75	-5.025	-4.32	-0.737
Number of reversals	110.1	121	125.5	138	145.7	0.1355	110	113.8	124	134	148.6	0.1633
EFC Monthly Low Flows												
October Low Flow	65.6	69.75	93.5	110	156.2	0.4305	70.99	86.85	105.5	152.8	173.4	0.6246
November Low Flow	60.3	65	78.5	91.5	115.8	0.3376	62.34	69.77	86.2	97.13	112.8	0.3173
December Low Flow	60	61	65	77.75	94.8	0.2577	57.2	60.3	70.2	81	89.9	0.2949
January Low Flow	58.8	60	65	70	76	0.1538	56.82	59.8	67.1	78	86	0.2712
February Low Flow	57	60	63.25	70	78.4	0.1581	59	61.6	67.5	78.1	82.8	0.2444
March Low Flow	59.2	60.5	65	75	88	0.2231	64.68	68.6	85.5	108.3	127	0.4637
April Low Flow	75.3	94.88	121	161	200	0.5465	98.07	115.8	158	218.5	232.3	0.6503
May Low Flow	127.2	196.8	215	246.3	260	0.2302	183.3	206.8	230.5	247	256.7	0.1746
June Low Flow	145	194.8	252	258	258	0.251	134	164.6	206.5	254.3	271	0.434
July Low Flow	148.2	185	201.5	236	251.8	0.2531	88.65	149.5	193.8	236.9	264.5	0.451
August Low Flow	97	129.8	176.5	215.8	247.2	0.4873	94	113.8	167.3	202.1	215.5	0.5284
September Low Flow	77.9	90	111	142.5	208	0.473	88.09	102.6	122.3	137.5	198.9	0.2853
EFC Flow Parameters												
Extreme low peak	45.7	50	50.75	54	55	0.07882	29.86	42.16	47.15	52.46	55	0.2185
Extreme low duration	1	2	3	4	6	0.6667	1	2.25	5.5	32.13	66.1	5.432
Extreme low timing	359	9.25	23	49.88	70.5	0.111	325.9	345	13.75	33.25	69.6	0.1482
Extreme low freq.	0	1.75	5	9	17.7	1.45	0	1	2	4.5	8.3	1.75
High flow peak	292	319.5	365.5	539	808	0.6005	308.3	320	349.8	465.1	680.8	0.4149
High flow duration	1	2.5	5	23.5	57	4.2	1.25	2	3.75	6.875	18	1.3
High flow timing	125	149	182	222	251.5	0.1995	111.5	137	175.8	216.9	231.3	0.2182
High flow frequency	1	1	2	4	5.7	1.5	1	1.25	3	4	8	0.9167
High flow rise rate	16.23	24.26	42.11	70	109	1.086	25.99	34.58	49.65	72.44	157.1	0.7624
High flow fall rate	-55.5	-48	-30	-22.38	-13.44	-0.8542	-78.13	-50.75	-38.93	-28.41	-20.38	-0.574
Small Flood peak	1192	1255	1430	1620	1936	0.2552	1200	1360	1430	1550	1740	0.1329
Small Flood duration	40.4	62.75	89	111.5	123.2	0.5478	60	84	101	119	128	0.3465
Small Flood timing	139	148	163	171.5	218.4	0.06421	139	153	159	163	171	0.02732
Small Flood freq.	0	0	0	1	1	0	0	0	1	1	1	1
Small Flood riserate	22.74	24.51	31.29	56.61	254.5	1.026	19.36	24.66	29.36	37.34	68.63	0.432
Small Flood fallrate	-71.96	-38.87	-27.64	-19.17	-15.04	-0.7129	-36	-30.64	-20.87	-19.17	-11.31	-0.5496
Large flood peak	2050	2058	2090	2580	2740	0.25			2400			
Large flood duration	107	107	109.5	121	124	0.1279			138			
Large flood timing	171	171.5	176	179.8	180	0.02254			136			
Large flood freq.	0	0	0	0	0.7	0	0	0	0	0	0	0
Large flood riserate	29.36	29.62	31.04	40.28	43.14	0.3432			66.56			
Large flood fallrate	-37.96	-37.93	-37.44	-34.32	-33.42	-0.0962			-20			

7 Messages:

The longest period of missing data is 182 days.

Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.

182 daily values have been interpolated in year 1942

141 daily values have been interpolated in year 2019

Warning: For two-period analyses, IHA re-assigns each daily flow value into a new EFC category.

Therefore, post-impact EFC magnitude values (e.g. monthly low flows) are not directly comparable to the pre-impact values.

To compare pre- to post-impact flow magnitudes, use IHA parameter groups #1 and #2 instead of EFCs.

EFC small flood minimum peak flow: EFC large flood minimum peak flow:

2170 4861

SanMiguelRiverAtUravanCO_No	on-Parametric							
Pre-impact period: 1974-1983 NormalizationFactor	(10 years)		Post-im	pact period: 198	34-2019 (35 years)			
Mean annual flow	363.5			329.3				
Non-Normalized Mean Flow	363.5			329.3				
Annual C. V.	1.54			1.43				
Flow predictability	0.55			0.47				
Constancy/predictability	0.5			0.55				
% of floods in 60d period	0.4 125			0.4 79				
Flood-free season								
	MEDIANS Pre Post	COE Pre	FF. of DISP. Post		IATION FACTOR lians C.D.	SIGI Med	NIFICANCE COUNT ians C.D.	
Parameter Group #1	402.5	420	0.544.5	0.7020	0.2505	0.3	0.0004	0.5066
October November	102.5 87.5	129 105.5	0.5415 0.4114	0.7039 0.5166	0.2585 0.2057	0.3 0.2556	0.0981 0.06206	0.5866 0.5746
December	82.5	81.2	0.5455	0.5936	0.01576	0.08826	0.9299	0.7718
January	75	85.5	0.5433	0.5415	0.14	0.003337	0.3914	0.994
February	81.75	99.5	0.6284	0.5196	0.2171	0.1732	0.1131	0.6016
March	102.5	142	0.6659	0.8345	0.3854	0.2533	0.05105	0.5676
April May	293.5 1110	617 846	2.591 1.061	0.8071 0.8085	1.102 0.2378	0.6885	0.01401 0.1902	0.1932 0.6146
June	1080	756.5	0.9102	1.007	0.2995	0.1067	0.3824	0.7578
July	451	233	1.068	1.644	0.4834	0.5389	0.3654	0.2583
August	121.5	135	1.71	0.9926	0.1111	0.4195	0.7668	0.3083
September	78.25	83.15	1.387	0.9314	0.06262	0.3282	0.7598	0.5015
Parameter Group #2 1-day minimum	27.5	30	0.7545	1.033	0.09091	0.3695	0.7718	0.3483
3-day minimum	30.83	33.1	0.7811	1.027	0.07351	0.3151	0.8999	0.4545
7-day minimum	34.57	38.13	0.7335	0.9963	0.1029	0.3583	0.8218	0.3634
30-day minimum	56.97	53.32	0.493	0.9847	0.06396	0.9975	0.9159	0.02703
90-day minimum 1-day maximum	75.64 2170	85.16 1790	0.2342 0.8502	0.4517 0.6704	0.1258 0.1751	0.9283	0.4394	0.05105 0.5796
3-day maximum	1948	1580	0.8749	0.6555	0.1751	0.2115 0.2508	0.3624 0.3183	0.5465
7-day maximum	1595	1346	1.031	0.7178	0.1563	0.3036	0.4545	0.5566
30-day maximum	1252	1013	0.9285	0.8039	0.191	0.1341	0.2793	0.7648
90-day maximum	1092	803.3	0.9448	0.783	0.2643	0.1712	0.1522	0.6997
Number of zero days Base flow index	0 0.1165	0 0.1402	0 0.755	0 0.5548	0.2032	0.2651	0.2392	0.5526
Parameter Group #3								
Date of minimum Date of maximum	282 128.5	251 133	0.2876 0.08607	0.1366 0.1448	0.1694 0.02459	0.5249 0.6825	0.03704 0.8058	0.3574 0.1451
Parameter Group #4								
Low pulse count	14	6	0.75	1.333	0.5714	0.7778	0.1321	0.1702
Low pulse duration	2	5 3	0.75	0.7	1.5	0.06667	0.00	0.8779
High pulse count High pulse duration	4.5 3.75	4	1 17.13	1 5.25	0.3333 0.06667	0 0.6936	0.2192 0.9029	0.7467 0.5886
Low Pulse Threshold	75		17.13	3.23	0.00007	0.0550	0.5025	0.5000
High Pulse Threshold	356							
Parameter Group #5 Rise rate	15	12.6	0.5667	0.873	0.16	0.5406	0.3844	0.1962
Fall rate	-12.75	-11	-0.3529	-0.6636	0.1373	0.8803	0.4444	0.1171
Number of reversals	129.5	124	0.1873	0.1935	0.04247	0.03359	0.5355	0.9429
EFC Low flows October Low Flow	106	129.5	0.4764	0.689	0.2217	0.4462	0.1041	0.4384
November Low Flow	88.75	107.5	0.3859	0.507	0.2113	0.3137	0.05906	0.5005
December Low Flow	85	88.7	0.5132	0.5048	0.04353	0.01645	0.8839	0.9469
January Low Flow	. 75	87.15	0.5433	0.455	0.162	0.1626	0.3223	0.6557
February Low Flow March Low Flow	81.75 102.5	101.3 127	0.5749 0.622	0.4319 0.4724	0.2385 0.239	0.2489 0.2404	0.06907 0.07808	0.4334 0.5045
April Low Flow	185	244	0.7378	0.4129	0.3189	0.4404	0.01101	0.3273
May Low Flow	120.5	265.8	0.4896	0.3791	1.205	0.2257	0.03704	0.6176
June Low Flow	283	240	0.4841	0.6104	0.1519	0.2609	0.6607	0.6106
July Low Flow August Low Flow	205 123.8	194.8 138	0.6049 1.153	0.7176 0.6377	0.05 0.1152	0.1863 0.4467	0.8148 0.5205	0.6136 0.2322
September Low Flow	89.75	109.5	0.8329	0.5621	0.2201	0.3251	0.3814	0.4314
EFC Parameters		20 :-	0.45==	0.255	0.050	0.55	0.5	
Extreme low peak Extreme low duration	37 2.5	39.15 4.75	0.4257 1	0.2024 0.9737	0.05811 0.9	0.5245 0.02632	0.5005 0.03704	0.1421 0.976
Extreme low duration Extreme low timing	2.5 337	4.75 246.8	0.3033	0.9/3/	0.4932	0.02632	0.03704	0.976
Extreme low freq.	4	2	1.5	2.5	0.5	0.6667	0.0991	0.2182
High flow peak	489	548	0.4034	0.5255	0.1207	0.3029	0.4454	0.7277
High flow duration	1.5	3.75	3.167	2.267	1.5	0.2842	0.00	0.7908
High flow timing High flow frequency	154.5 4	159.8 3	0.3637 1.188	0.2541 1	0.02869 0.25	0.3014 0.1579	0.9249 0.2903	0.3293 0.6737
High flow rise rate	123.8	105.6	1.725	1.127	0.1465	0.3469	0.4755	0.3724
High flow fall rate	-121.3	-57.93	-1.167	-0.981	0.5222	0.1591	0.007007	0.7818
Small Flood peak Small Flood duration	2520 99	2885 121	0.4415 0.4242	0.2288	0.1448 0.2222	0.4818	0.1942 0.3804	0.4915 0.8198
Small Flood duration Small Flood timing	115.5	118.5	0.4242	0.2562 0.0929	0.2222	0.3961 0.8889	0.3804	0.8198
Small Flood freq.	0	0	0.01510	0.0323				
Small Flood riserate	289.7	73.4	1.353	0.6418	0.7466	0.5255	0.04605	0.4945
Small Flood fallrate	-29.21	-30.63	-0.7846	-0.7276	0.04852	0.07266	0.971	0.7077
Large flood peak Large flood duration	4980 127	5440 119			0.09237 0.06299		0.00 0.1772	
Large flood timing	131	137			0.03279		0.1772	
Large flood freq.	0	0	0	0				
Large flood riserate Large flood fallrate	205.7 -44.11	125.7 -64.41			0.3891 0.46		0.1772 0.00	
EFC low flow threshold: EFC high flow threshold: EFC extreme low flow threshold	d:	356 50.3						

	Pre-impact period: 1	1974-1983		Р	ost-impact period: 1	984-2019					
		Coeff. of Dispersion M	1inimum M	faximum M		oeff. of Dispersion	Minimum	Maximum	RVA Boundaries Low		Hydrologic Alteratio
	ricularis	Dispersion in		iaxiiiiuiii i	ieularis D	rispersion	Millimani	Maximum	LOW	riigii ((Middle Category)
Parameter Group #1											
October	102.5 87.5	0.5415 0.4114	35 64	234 161	129 105.5	0.7039 0.5166	40 40	332 335.5			-0.3143 -0.2857
November December	82.5	0.5455	49	133	81.2	0.5936	38.2	170			-0.4286
January	75	0.5433	50	130	85.5	0.5415	40	140			-0.2857
February	81.75	0.6284	55	152	99.5	0.5196	40	170			0
March	102.5	0.6659	61	201	142	0.8345	40	696	89.41	130.1	-0.3571
April	293.5	2.591	75.5	1171	617	0.8071	40	2055			-0.07143
May	1110	1.061	77	2190	846	0.8085	40	3280			0.07143
June	1080	0.9102	208	2345	756.5	1.007	40	1630			0.2143
July August	451 121.5	1.068 1.71	59 28	1210 590	233 135	1.644 0.9926	8.07 6.32	881 607			-0.2143 0.5714
September	78.25	1.387	23	383.5	83.15	0.9314	12.5	308			0.07143
Parameter Group #2											
1-day minimum	27.5	0.7545 0.7811	9.4	90 94	30 33.1	1.033	2.61	104			-0.4286
3-day minimum 7-day minimum	30.83 34.57	0.7335	10.8 14.06	99.57	38.13	1.027 0.9963	3.08 3.947	106 114.3			-0.5 -0.4286
30-day minimum	56.97	0.493	21.57	118.5	53.32	0.9847	8.515	129.8			-0.7857
90-day minimum	75.64	0.2342	50.77	135.1	85.16	0.4517	15.14	163.6			-0.5
1-day maximum	2170	0.8502	805	4980	1790	0.6704	197	5440			-0.2143
3-day maximum	1948	0.8749	758.3	4613	1580	0.6555	155.3	5170			-0.07143
7-day maximum	1595	1.031	420.4	3583	1346	0.7178	127	4819			-0.1429
30-day maximum	1252 1092	0.9285 0.9448	184.3 139.8	2694 2239	1013 803.3	0.8039 0.783	73.7	3558 2327			-0.1429
90-day maximum Number of zero days	0	0.9446	139.6	2239	003.3	0.763	51.21 0	2327			0.2143 0
Base flow index	0.1165	0.755	0.05315	0.2525	0.1402	0.5548	0.05341	0.7584			0.1429
Parameter Group #3								_			
Date of minimum	282	0.2876	1	365	251	0.1366	22 92	366			-0.07143
Date of maximum	128.5	0.08607	110	229	133	0.1448	92	280	117.6	136.7	-0.7143
Parameter Group #4											
Low pulse count	14	0.75	0	20	6	1.333	0	19	9.63	17.74	-0.2143
Low pulse duration	2	0.75	1	6	5	0.7	1	17			-0.8286
High pulse count	4.5	1	1	10	3	1	0	11			-0.2571
High pulse duration	3.75	17.13	1	105	4	5.25	1	119	1.945	24.5	0.6429
The low pulse threshold is			75 356								
The high pulse threshold is			330								
Parameter Group #5											
Rise rate	15	0.5667	6	24	12.6	0.873	2.205	38			-0.6429
Fall rate											
	-12.75	-0.3529	-21	-7	-11	-0.6636	-30	-2.8			-0.7143
Number of reversals	129.5	0.1873	106	147	-11 124	0.1935	-30	-2.8 144			0.1429
	129.5		106	147		0.1935	8				
Number of reversals	129.5 ration Middle RVA Categor	0.1873 y	106 H	147 ligh RVA Category	124	0.1935	8 Low RVA Category	144	119.7		
Number of reversals Assessment of Hydrologic Alter	129.5 ration Middle RVA Categor	0.1873 y	106 H	147 ligh RVA Category	124	0.1935	8 Low RVA Category	144			
Number of reversals Assessment of Hydrologic Alte Parameter Group #1	129.5 ration Middle RVA Categor Expected	0.1873 y Observed A	106 H Iter. E	147 ligh RVA Category expected C	124 Observed A	0.1935 lter.	8 Low RVA Category Expected	144 Observed	119.7 Alter.	135.1	
Number of reversals Assessment of Hydrologic Alter	129.5 ration Middle RVA Categor	0.1873 y	106 H	147 ligh RVA Category	124	0.1935	8 Low RVA Category	144	119.7 Alter.	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October	129.5 ration Middle RVA Categor Expected 17.5	0.1873 y Observed A	106 H Iter. E -0.3143	147 ligh RVA Category expected C	124 observed A	0.1935 lter. 0.8095	8 Low RVA Category Expected 7	144 Observed 4	119.7 Alter. -0.4286 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January	129.5 ration Middle RVA Categor Expected 17.5 14 14 14	0.1873 y Observed A 12 10 8 10		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5	124 observed A 19 20 16 15	0.1935 liter. 0.8095 0.9048 0.5238 0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5	144 Observed 4 5 11 10	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14	0.1873 y Observed A 12 10 8 10 14		147 ligh RVA Category expected C 10.5 10.5 10.5 10.5	124 observed A 19 20 16 15 16	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9		147 Nigh RVA Category C Expected 10.5 10.5 10.5 10.5 10.5	124 observed A 19 20 16 15 16 20	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286	135.1	
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April	nation Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5	124 observed A 19 20 16 15 16 20 16	0.1935 dter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6		135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15		147 ligh RVA Category expected C 10.5 10.5 10.5 10.5 10.5 10.5	124 bbserved A 19 20 16 15 16 20 16 5	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15		135.1	
Number of reversals Assessment of Hydrologic Alter Parameter Group #1 October November December January February March April	nation Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5	124 observed A 19 20 16 15 16 20 16	0.1935 dter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5	0bserved 4 5 11 10 5 6 6 15	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 -0.4286 0.4286 0.2381	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14 1	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	124 bbserved A 19 20 16 15 16 20 16 5 5 6 4	0.1935 liter. 0.8095 0.9048 0.5238 0.9048 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.4286 -0.619	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.5238 -0.4286 -0.4286 -0.4286 0.2381 -0.7143 -0.1429	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 14 19 13 15 17		147 ligh RVA Category xpected C C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	124 bbserved A 19 20 16 15 16 20 16 5 5	0.1935 Jeter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 15 13 18	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.5238 -0.4286 -0.4286 -0.4286 0.2381 -0.7143 -0.1429	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14 1	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	124 bbserved A 19 20 16 15 16 20 16 5 5 6 4	0.1935 liter. 0.8095 0.9048 0.5238 0.9048 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.4286 -0.619	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.5238 -0.4286 -0.4286 -0.4286 0.2381 -0.7143 -0.1429	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14 1	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	124 bbserved A 19 20 16 15 16 20 16 5 5 6 4	0.1935 liter. 0.8095 0.9048 0.5238 0.9048 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.4286 -0.619	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	124 A 19 20 166 15 16 20 16 6 5 5 6 6 4 1 13	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.4286 -0.619 0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7	119.7 Alter. -0.4286 -0.5238 0.04762 -0.4286 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 7-day minimum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 15 16 20 16 6 4 13 14 16 17	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 13 12 10	119.7 Alter. -0.4286 -0.5238 0.04762 -0.4286 -0.4286 0.2381 0.7143 -0.1429 -0.3333	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 7-day minimum 7-day minimum 3-day minimum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 0 -0.3571 -0.07143 0.07143 0.2143 -0.2143 -0.2143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143	147 ligh RVA Category expected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	124 lbserved A 19 20 16 15 16 20 16 6 4 13 14 16 17 16	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.2381 0.2381 0.2381 0.3333 0.5238 0.6199 0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 13 12 10 16	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.04762 -0.4286 -0.4286 -0.4286 -0.4286 -0.2381 -0.1429 -0.3333 0.2381 -0.1429 -0.04762 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 90-day minimum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A A 19 20 16 15 15 16 20 16 15 16 17 16 18 18	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.5238 0.619 0.2381 0.5238 0.5238 0.5238 0.5238 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 7 13 12 10 16 10 10	119.7 Alter. -0.4286 -0.5238 0.04762 -0.5238 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2381 0.14429 -0.04762	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 90-day minimum 91-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14 1	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 8 7	106 Her. E -0.3143 -0.2857 -0.4286 -0.2857 0.07143 0.07143 0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.7145 -0.7514 -0.77145 -0.7557 -0.55 -0.4286 -0.7857 -0.55 -0.4286 -0.7857 -0.55 -0.2143	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 5 15 16 20 16 5 5 5 16 16 13 14 16 17 16 18 8 8	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.4286 -0.619 0.2381 0.3333 0.5238 0.6194 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 7 13 12 10 16 10 16	119.7 Alter. -0.4286 -0.5238 0.04762 -0.62538 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2381 0.1429 -0.4762 0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 7-day minimum 9-day minimum 10-day minimum 1-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 14 13 15 17 11 22 15		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 5 5 6 4 13 14 16 17 16 18 8	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.619 0.2381 0.5238 0.7143 -0.2381 -0.2381	8 Low RVA Category Expected 7 10.5.	144 Observed 4 5 11 10 6 6 6 15 13 18 9 7 7 13 12 10 16 10 16 11 14	119.7 Alter. -0.4286 -0.5238 0.04762 -0.94762 -0.4286 -0.4286 -0.4286 0.2381 0.7143 -0.1429 -0.3333	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 90-day minimum 91-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14 1	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 8 7	106 Her. E -0.3143 -0.2857 -0.4286 -0.2857 0.07143 0.07143 0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.7145 -0.7514 -0.77145 -0.7557 -0.55 -0.4286 -0.7857 -0.55 -0.4286 -0.7857 -0.55 -0.2143	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 5 15 16 20 16 5 5 5 16 16 13 14 16 17 16 18 8 8	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.4286 -0.619 0.2381 0.3333 0.5238 0.6194 0.5238	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 7 13 12 10 16 10 16	119.7 Alter. -0.4286 -0.5238 0.04762 -0.9238 -0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2381 0.1429 -0.04762 0.5238 0.04762	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 3-day maximum 3-day maximum 3-day maximum 3-day maximum 30-day maximum 30-day maximum 30-day maximum 30-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 12 12 17		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 16 20 16 5 5 6 4 4 13 14 16 17 16 18 8 8 8 7 7 6 6	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.4286 -0.619 0.2381 0.5238 0.5238 0.5238 -0.4286 0.619 0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 7 13 12 10 16 16 14 15 16 12	119.7 Alter. -0.4286 -0.5238 0.04762 -0.4286 -0.4286 0.2381 0.7143 -0.1429 -0.3333 0.1429 -0.04762 0.5238 0.04762 0.5238 0.04762 0.5238 0.04333 0.4286	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 7-day minimum 3-day minimum 9-day minimum 1-day maximum 3-day maximum 90-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 12 17 35	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 0.07143 0.07143 0.2143 -0.2143 0.5714 0.07143 -0.4286 -0.55 -0.4286 -0.7857 -0.57 -0.4286 -0.7857 -0.7143 -0.1439 -0.1439 -0.1429 -0.1439	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 5 5 6 4 13 14 16 17 16 18 8 8 8 7 6	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 0.0238 0.619 0.2381 0.5238 0.7143 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 7 13 12 10 16 10 16 14 15 16 12 0	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.04762 -0.04762 -0.2386 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.2381 -0.1429 -0.3333 -0.4266 -0.5238 -0.3333 -0.4286 -0.5238 -0.1429 -0.1429 -0.1429 -0.1429	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 3-day maximum 3-day maximum 3-day maximum 3-day maximum 30-day maximum 30-day maximum 30-day maximum 30-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 12 12 17		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 16 20 16 5 5 6 4 4 13 14 16 17 16 18 8 8 8 7 7 6 6	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 0.5238 0.05238 0.619 0.2381 0.5238 0.619 0.5238 0.7143 0.2381 0.2381 0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 7 13 12 10 16 16 14 15 16 12	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2381 0.1429 -0.04762 0.5238 0.3333 0.4266 0.5258 0.1429	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 7-day minimum 3-day minimum 9-day minimum 1-day maximum 3-day maximum 90-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 12 17 35	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 0.07143 0.07143 0.2143 -0.2143 0.5714 0.07143 -0.4286 -0.55 -0.4286 -0.7857 -0.57 -0.4286 -0.7857 -0.7143 -0.1439 -0.1439 -0.1429 -0.1439	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 5 5 6 4 13 14 16 17 16 18 8 8 8 7 6	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 0.0238 0.619 0.2381 0.5238 0.7143 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 7 13 12 10 16 10 16 14 15 16 12 0	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.04762 -0.04762 -0.2386 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.2381 -0.1429 -0.3333 -0.4266 -0.5238 -0.3333 -0.4286 -0.5238 -0.1429 -0.1429 -0.1429 -0.1429	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 3-day minimum 3-day maximum 3-day m	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 7 11 13 12 12 17 35 16	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 -0.07143 -0.07143 -0.2143 -0.2143 -0.2143 -0.7143	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 15 5 6 4 13 14 16 17 16 18 8 8 8 7 6 0 14	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.619 0.2381 0.3333 0.5238 0.7143 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381 -0.3333 -0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 7 13 12 10 16 16 11 15 16 12 20 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 0.4286 0.4286 0.4286 0.2381 0.7142 -0.1429 -0.3333 0.1429 -0.04762 0.5238 0.1429 -0.4762 0.5238 0.1429 -0.4762 0.5238 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 1-day minimum 1-day minimum 1-day maximum 3-day maximum 3-day maximum 90-day minimum 90-day minimum 90-day maximum 80-day maximum 81-day maximum 81-day maximum 82-day maximum 83-day maximum 84-day maximum 85-day maximum 85-day maximum 85-day maximum 86-day maximum 86-day maximum 87-day maximum 88-day maximum 89-day maximum 89-day maximum 89-day maximum 90-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 7 11 13 12 12 12 17 35 16		147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 15 16 5 5 6 4 13 14 16 17 16 18 8 8 8 7 7 6 0 14	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.619 0.2381 0.3333 0.5238 0.619 0.2381 0.3333 0.5238 0.7143 -0.2381 -0.3333 -0.4286	8 Low RVA Category Expected 7 10.5.	144 Observed 4 5 11 10 5 6 6 15 13 18 9 7 7 13 12 10 16 10 16 14 15 16 12 0 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 0.4286 0.4286 0.4286 0.2381 0.7142 -0.1429 -0.3333 0.1429 -0.04762 0.5238 0.1429 -0.4762 0.5238 0.1429 -0.4762 0.5238 0.1429 -0.5238	135.1	
Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 7-day minimum 3-day minimum 3-day minimum 3-day minimum 3-day maximum 3-day maximum 30-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 7 11 13 12 12 17 35 16	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 -0.07143 -0.07143 -0.2143 -0.2143 -0.2143 -0.7143	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 15 5 6 4 13 14 16 17 16 18 8 8 8 7 6 0 14	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.619 0.2381 0.3333 0.5238 0.7143 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381 -0.3333 -0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 7 13 12 10 16 16 11 15 16 12 20 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 0.4286 0.4286 0.4286 0.2381 0.7142 -0.1429 -0.3333 0.1429 -0.04762 0.5238 0.1429 -0.4762 0.5238 0.1429 -0.4762 0.5238 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 9-day minimum 1-day maximum 3-day maximum 7-day maximum 9-day m	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 19 13 15 17 11 22 15 8 7 8 3 7 11 13 12 17 13 12 17 13 12 17 13 14 14 14 15 16	106 Heter. -0.3143 -0.2857 -0.4286 -0.2857 -0.07143 -0.07143 -0.2143 -0.2143 -0.2143 -0.5714 -0.07143 -0.2143 -0.7143 -0.1439 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429	147 ligh RVA Category xpected 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 15 16 20 16 5 5 6 4 13 11 14 16 17 16 18 8 8 8 7 6 0 14 13	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 0.619 0.2381 0.5238 0.7143 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381 -0.3333 -0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 6 15 13 18 9 7 7 13 12 10 16 16 16 12 0 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.94762 -0.4286 -0.4286 -0.4286 0.2381 0.7143 -0.1429 -0.3333 0.4286 0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 1-day maximum 1-day maximum 3-day maximum 3-day maximum 30-day minimum 30-day minimum 30-day minimum 30-day minimum 30-day maximum 3	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 7 11 13 12 12 17 35 16	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 -0.07143 -0.07143 -0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.2143 -0.1429 -0.4286 -0.7857 -0.5 -0.4286 -0.7857 -0.5 -0.2143 -0.07143 -0.1429	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 16 20 16 5 5 6 4 13 14 16 18 8 8 8 7 6 0 14 3 17	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.619 0.2381 0.3333 0.5238 0.7143 -0.2381 -0.2381 -0.2381 -0.2381 -0.2381 -0.3333 -0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 7 13 12 10 16 16 11 15 16 12 20 5	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.04762 -0.1286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.1429 -0.1429 -0.3333 0.2381 -0.1429 -0.04762 -0.5238 -0.3333 -0.4286 -0.5238 -0.1429 -0.5238 -0.3333 -1.19	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 9-day minimum 1-day maximum 3-day maximum 7-day maximum 9-day m	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 12 17 35 16	106 Heter. -0.3143 -0.2857 -0.4286 -0.2857 -0.07143 -0.07143 -0.2143 -0.2143 -0.2143 -0.5714 -0.07143 -0.2143 -0.7143 -0.1439 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429 -0.1429	147 ligh RVA Category xpected C 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 15 16 20 16 5 5 6 4 13 11 14 16 17 16 18 8 8 8 7 6 0 14 13	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.4286 -0.619 0.2381 0.5238 0.7143 -0.2381 -0.2381 -0.3333 -0.4286 0.3333 -0.4286	8 Low RVA Category Expected 7 10.5.	144 Observed 4 5 11 10 6 6 6 15 13 18 9 7 13 12 10 16 10 16 11 15 16 12 0 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.4286 -0.4286 -0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2381 0.1429 -0.4762 0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 1-day maximum 3-day maximum 90-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 17 35 16	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 0.07143 -0.07143 -0.2143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143 -0.7143	147 ligh RVA Category xpected 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 4 13 14 16 17 16 18 8 8 8 7 6 0 14 13 17	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 -0.5238 -0.5238 0.619 0.2381 0.5238 0.619 0.5238 0.7143 -0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 6 15 13 18 9 7 7 13 12 10 16 16 16 12 10 0 5	119.7 Alter. -0.4286 -0.5238 0.04762 -0.4286 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333 0.1429 -0.04762 0.5238 0.3333 0.4286 0.5238 0.1429 -0.5238 0.3333 0.1429 -0.5238 0.3333 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 1-day minimum 90-day minimum 1-day maximum 90-day maximum 90-day maximum 90-day maximum Roday maximum Ro	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 7 11 13 12 12 12 12 17 35 16		147 ligh RVA Category xpected 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 16 15 16 16 17 17 16 18 8 8 8 7 6 0 14 3 17	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 0.05238 0.05238 0.05238 0.05238 0.05238 0.05238 0.05238 0.0438 0.04333 0.5238 0.0438 0.0438 0.03333 0.4286 0.3333 0.4286 0.3333 0.4286 0.3333 0.4286 0.3333 0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 13 18 9 7 13 12 10 16 16 10 16 17 18 19 19 14 23 24 19	119.7 Alter. -0.4286 -0.5238 0.04762 -0.4286 -0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333 0.1429 -0.04762 0.5238 0.1429 -0.0528 0.03333 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 3-day minimum 90-day minimum 1-day maximum 30-day maximum 90-day maximum	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 3 7 11 13 12 12 17 35 16	106 Iter. E -0.3143 -0.2857 -0.4286 -0.2857 0.07143 0.07143 0.2143 -0.2143 0.5714 -0.07143 -0.2143 0.5714 -0.7143 -0.4286 -0.7857 -0.55 -0.4286 -0.7857 -0.55 -0.1429	147 ligh RVA Category xpected 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 15 17 11 18 8 8 8 7 6 0 14 3 17	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 -0.5238 -0.5238 -0.5238 -0.5238 -0.5238 0.5238 0.5238 0.619 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 6 6 15 13 18 9 7 7 13 12 10 16 16 12 10 16 12 12 10 16 22 19 14	119.7 Alter. -0.4286 -0.5238 0.04762 -0.04762 -0.5238 -0.4286 0.4286 0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2381 0.1429 -0.04762 0.5238 0.3333 0.4286 0.5258 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 30-day minimum 1-day minimum 90-day minimum 1-day maximum 90-day maximum 90-day maximum 90-day maximum Roday maximum Ro	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 9 13 15 17 11 22 15 8 7 8 7 11 13 12 12 12 12 17 35 16		147 ligh RVA Category xpected 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bbserved A 19 20 16 16 15 16 16 17 17 16 18 8 8 8 7 6 0 14 3 17	0.1935 liter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 0.05238 0.05238 0.05238 0.05238 0.05238 0.05238 0.05238 0.0438 0.04333 0.5238 0.0438 0.0438 0.03333 0.4286 0.3333 0.4286 0.3333 0.4286 0.3333 0.4286 0.3333 0.4286	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 13 18 9 7 13 12 10 16 16 10 16 17 18 19 19 14 23 24 19	119.7 Alter. -0.4286 -0.5238 0.04762 -0.4286 -0.4286 0.2381 0.7143 -0.1429 -0.3333 0.2481 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.1429 -0.5238 0.3333	135.1	
Number of reversals Assessment of Hydrologic Alte Parameter Group #1 October November December January February March April May June July August September Parameter Group #2 1-day minimum 3-day minimum 3-day minimum 30-day minimum 1-day minimum 1-day maximum 7-day maximum 7-day maximum 90-day maximum 90-day maximum Paday maximum Paday maximum Paday maximum Poday maximum Poday maximum Poday maximum Output Double output Low pulse count Low pulse duration High pulse count High pulse count High pulse duration Parameter Group #5 Rise rate	129.5 ration Middle RVA Categor Expected 17.5 14 14 14 14 14 14 14 14 14 14 14 14 14	0.1873 y Observed A 12 10 8 10 14 14 12 15 17 11 22 15 8 8 7 7 8 8 3 7 11 13 12 12 17 35 16		147 ligh RVA Category xpected 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	124 bserved A 19 20 16 15 16 20 16 5 5 6 4 13 14 16 17 16 18 8 8 8 7 7 6 0 0 14 3 17	0.1935 lter. 0.8095 0.9048 0.5238 0.4286 0.5238 0.9048 0.5238 0.5238 0.5238 0.5238 0.619 0.2381 0.3333 0.5238 0.619 0.5238 0.7143 0.2381 0.3333 0.4286 0.3333 0.4286 0.3333 0.619 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381	8 Low RVA Category Expected 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	144 Observed 4 5 11 10 5 6 6 6 15 13 18 9 7 7 13 12 10 16 10 16 14 15 12 0 5 19 14	119.7 Alter. -0.4286 -0.5238 -0.04762 -0.04762 -0.1286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.4286 -0.2381 -0.1429 -0.3333 -0.1429 -0.04762 -0.5238 -0.1429 -0.5238 -0.1429 -0.5238 -0.1429 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.5238 -0.0486 -0.0	135.1	

IHA Percentile Data
SanMiguelRiverAtUravanCO_Non-Parametric

	Pre-impact period: 1974-1983 (10 years)					Post-in	Post-impact period: 1984-2019 (35 years)					
		Pre-Imp						Post-Im				
Parameter Group #1	10% 25%	50%	75%	90%	(/5-	25)/50 10%	25%	50%	75%	90%	(/5-	25)/50
October	37.8	75	102.5	130.5	224.4	0.5415	73.18	91.2	129	182	247.4	0.7039
November	64.95	76.5	87.5	112.5	156.9	0.4114	71.61	87.5	105.5	142	171.6	0.5166
December	49.7	59	82.5	104	131.3	0.5455	52.32	61.8	81.2	110	145.4	0.5936
lanuary	51.5	65	75	105.8	129	0.5433	48.28	62.7	85.5	109	125.2	0.5415
February	55.55	64.63	81.75	116	149	0.6284	61.17	73.3	99.5	125	133	0.5196
March	62.8	83.5	102.5	151.8	198.4	0.6659	74.56	97.5	142	216	374.8	0.8345
April	81.15	184.1	293.5	944.5	1151	2.591	156.9	445	617	943	1195	0.8071
Mav	85.6	480.3	1110	1658	2145	1.061	238.4	516	846	1200	1994	0.8085
June	227.3	463.3	1080	1446	2256	0.9102	130.2	433	756.5	1195	1477	1.007
July	66.9	195.8	451	677.5	1189	1.068	37.84	117	233	500	678.8	1,644
August	30.6	57.75	121.5	265.5	565.8	1.71	31.14	63	135	197	301.4	0.9926
September	23.5	40.38	78.25	148.9	361.5	1.387	36.79	59.55	83.15	137	267.6	0.9314
Parameter Group #2												
1-day minimum	9.66	21	27.5	41.75	86	0.7545	12.14	21	30	52	91.6	1.033
3-day minimum	11.02	21.5	30.83	45.58	90.93	0.7811	14.61	22.33	33.1	56.33	98.33	1.027
7-day minimum	14.12	22.64	34.57	48	96.26	0.7335	16.43	25.16	38.13	63.14	106.7	0.9963
30-day minimum	22.3	40.95	56.97	69.03	113.6	0.493	30.8	39.16	53.32	91.67	118.4	0.9847
90-day minimum	51.91	65.53	75.64	83.24	130.5	0.2342	46.72	65.66	85.16	104.1	133.6	0.4517
1-day maximum	812.5	1075	2170	2920	4861	0.8502	615	1070	1790	2270	3340	0.6704
3-day maximum	762.2	837.9	1948	2543	4480	0.8749	561.9	967.7	1580	2003	3097	0.6555
7-day maximum	452.8	790.9	1595	2435	3533	1.031	473.5	902.6	1346	1869	2878	0.7178
30-day maximum	213.4	660	1252	1823	2621	0.9285	355.4	703.5	1013	1518	2281	0.8039
90-day maximum	159.7	475.9	1092	1507	2181	0.9448	251.1	528	803.3	1157	1691	0.783
Number of zero days	0	0	0	0	0	0	0	0	0	0	0	0
Base flow index	0.05334	0.06755	0.1165	0.1555	0.243	0.755	0.06564	0.09455	0.1402	0.1723	0.2559	0.5548
Parameter Group #3												
Date of minimum	225.7	255.3	282	360.5	0.8	0.2876	30	224	251	274	298.6	0.1366
Date of maximum	110.4	116.3	128.5	147.8	222.3	0.08607	99.6	106	133	159	259	0.1448
Parameter Group #4												
Low pulse count	0.7	8.5	14	19	19.9	0.75	0	3	6	11	14.2	1.333
Low pulse duration	1	1.5	2	3	6	0.75	2	3	5	6.5	9	0.7
High pulse count	1	1.75	4.5	6.25	9.7	1	1	2	3	5	6.4	1
High pulse duration	1	1	3.75	65.25	103.8	17.13	2	2.5	4	23.5	53	5.25
Parameter Group #5												
Rise rate	6.4	11.5	15	20	23.6	0.5667	7.02	10	12.6	21	30.4	0.873
Fall rate	-20.9	-15.5	-12.75	-11	-7.4	-0.3529	-23.4	-16.3	-11	-9	-5.56	-0.6636
Number of reversals	106.7	113.8	129.5	138	146.4	0.1873	96	109	124	133	140.4	0.1935
EFC Monthly Low Flows												
October Low Flow	64.6	79.75	106	130.3	224.3	0.4764	85.88	94.52	129.5	183.8	248.8	0.689
November Low Flow	67	78.25	88.75	112.5	156.9	0.3859	79.78	87.5	107.5	142	171.8	0.507
December Low Flow	60	60.38	85	104	131.3	0.5132	60.25	65.23	88.7	110	146	0.5048
January Low Flow	56	65	75	105.8	129	0.5433	55.25	69.6	87.15	109.3	126	0.455
February Low Flow	60.6	69	81.75	116	149	0.5749	68.8	81.4	101.3	125.1	133.3	0.4319
March Low Flow	66.85	85.75	102.5	149.5	197.5	0.622	81	101	127	161	223.5	0.4724
April Low Flow	83	109	185	245.5	305.5	0.7378	124.2	199.5	244	300.3	330.1	0.4129
May Low Flow	91	91	120.5	150	150	0.4896	107.3	221.8	265.8	322.5	334.4	0.3791
June Low Flow	208	208	283	345	345	0.4841	120	159	240	305.5	347.8	0.6104
July Low Flow	101	132	205	256	334.5	0.6049	100.9	118.3	194.8	258	315.3	0.7176
August Low Flow	68.05	89.88	123.8	232.5	291.6	1.153	72.56	93	138	181	220	0.6377
September Low Flow	60	83.88	89.75	158.6	331	0.8329	66.4	77.45	109.5	139	211.4	0.5621
EFC Flow Parameters												
Extreme low peak	29.5	31.75	37	47.5	50	0.4257	27.63	35.5	39.15	43.43	48.3	0.2024
Extreme low duration	1	1	2.5	3.5	27	1	1	2	4.75	6.625	13.1	0.9737
Extreme low timing	239.5	270.5	337	15.5	71	0.3033	18.25	213.5	246.8	267.5	311.2	0.1475
Extreme low freq.	0.1	1.75	4	7.75	18.4	1.5	0	0	2	5	10.6	2.5
High flow peak	411.5	428.3	489	625.5	1293	0.4034	408.5	423.5	548	711.5	1109	0.5255
High flow duration	1	1	1.5	5.75	56	3.167	1.65	2	3.75	10.5	44.4	2.267
High flow timing	16.5	101	154.5	234.1	275	0.3637	105.2	122.5	159.8	215.5	261.7	0.2541
High flow frequency	0	1.5	4	6.25	9.7	1.188	0.6	2	3	5	6.4	1
High flow rise rate	40.92	88.5	123.8	302	349.2	1.725	35.62	51.58	105.6	170.6	271.8	1.127
High flow fall rate	-301.3	-204.1	-121.3	-62.63	-53.46	-1.167	-126.9	-95.54	-57.93	-38.71	-28.9	-0.981
Small Flood peak	2380	2388	2520	3500	3790	0.4415	2270	2698	2885	3358	3940	0.2288
Small Flood duration	54	63.75	99	105.8	106	0.4242	74	107	121	138	152	0.2562
Small Flood timing	110	111	115.5	129	133	0.04918	106	109.3	118.5	143.3	164	0.0929
Small Flood freq.	0	0	0	1	1	0	0	0	0	0	1	0
Small Flood riserate	100.6	132.3	289.7	524.1	581.5	1.353	49.94	52.35	73.4	99.46	226.1	0.6418
Small Flood fallrate	-50.78	-46.59	-29.21	-23.67	-23.43	-0.7846	-51.92	-47	-30.63	-24.71	-21.66	-0.7276
Large flood peak			4980						5440			
Large flood duration			127						119			
Large flood timing			131						137			
Large flood freq.	0	0	0	0	0.9	0	0	0	0	0	0	0
Large flood riserate			205.7						125.7			
Large flood fallrate			-44.11						-64.41			

9 Messages:

The longest period of missing data is 334 days. Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.

Interpolating across this gap may cause anomalies in the statistics. Please use them with caution.

334 daily values have been interpolated in year 1996

44 daily values have been interpolated in year 2019

An EFC extreme low flow event has been truncated at the beginning by missing year 1995 This event is not used to compute annual statistics.

WARNING: Some of the Colwell parameters are based on fewer than twenty years of data.

Warning: For two-period analyses, IHA re-assigns each daily flow value into a new EFC category.

Therefore, post-impact EFC magnitude values (e.g. monthly low flows) are not directly comparable to the pre-impact values.

To compare pre- to post-impact flow magnitudes, use IHA parameter groups #1 and #2 instead of EFCs.

Appendix B

Daily Average Data and Time-Series Average

Appendix C

Plots of Top Ten Ranked Parameters based on Dolores River at Bedrock, CO Gage

Appendix D

Annual Exceedance Probabilities

Appendix E

Flow Duration Curves

```
E-1 Dolores River At Bedrock Pre.txt
-----
Bulletin 17B Frequency Analysis
   25 Nov 2019 01:04 PM
--- Input Data ---
Analysis Name: Middle Dolores River - Pre-Dam
Description:
Data Set Name: DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK
DSS File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\ChannelFormingDischarge.dss
DSS Pathname: /DOLORES RIVER/BEDROCK, CO/FLOW-ANNUAL
PEAK/01jan1900/IR-CENTURY/USGS/
Report File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\Bulletin17Results\Middle_Dolores_River_-_Pre-Dam\Middle_Dolores
River_-_Pre-Dam.rpt
XML File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605 RiversEdge DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\Bulletin17Results\Middle_Dolores_River_-_Pre-Dam\Middle_Dolores
_River_-_Pre-Dam.xml
Start Date:
End Date:
Skew Option: Use Station Skew
Regional Skew: -Infinity
Regional Skew MSE: -Infinity
Plotting Position Type: Hirsch-Stedinger
Upper Confidence Level: 0.05
Lower Confidence Level: 0.95
Display ordinate values using 1 digits in fraction part of value
--- End of Input Data ---
<< EMA Representation of Data >>
```

Page 1

DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

1967 through 1970 represent 1918 to 1921 data

		/					
		/	E-1_Dolores F	River At Bed	rock_Pre.txt		
			Value		Thresh	old	
	Year	/ Peak	Low	High	Low	High	Type
	- <u></u>						
	1967	1,690.0	1,690.0	1,690.0	1.0E-99	1.0E99	Syst
	1968	2,340.0	2,340.0	2,340.0	1.0E-99	1.0E99	Syst
	1969	4,040.0	4,040.0	4,040.0	1.0E-99	1.0E99	Syst
	1970	4,090.0	4,090.0	4,090.0	1.0F-99	1.0F99	Syst
	1971	5,690.0	5,690.0	5,690.0	1.0E-99	1.0E99	Syst
	1972	1,920.0	1,920.0	1,920.0	1.0E-99	1.0E99	Syst
	1973	9,280.0	9,280.0	9,280.0	1.0E-99	1.0E99	Syst
	1974	3,430.0	3,430.0	3,430.0	1.0E-99	1.0E99	Syst
	1975	8,020.0	8,020.0	8,020.0	1.0E-99	1.0E99	Syst
	1976	2,310.0	2,310.0	2,310.0	1.0E-99	1.0E99	Syst
	1977	6,720.0	6,720.0	6,720.0	1.0E-99	1.0E99	Syst
ĺ	1978	4,450.0	4,450.0	4,450.0	1.0E-99	1.0E99	Syst
ĺ	1979	8,520.0	8,520.0	8,520.0	1.0E-99	1.0E99	Syst
ĺ	1980	8,700.0	8,700.0	8,700.0	1.0E-99	1.0E99	Syst
ĺ	1981	1,290.0	1,290.0	1,290.0	1.0E-99	1.0E99	Syst
ĺ	1982	4,110.0	4,110.0	4,110.0	1.0E-99	1.0E99	Syst
ĺ	1983	8,360.0	8,360.0	8,360.0	1.0E-99	1.0E99	Syst
i		-	j	-	İ		į į

Fitted log10 Moments Skew	Mean	Variance	Std Dev
EMA at-site data w/o regional info -0.384992	3.624504	0.075985	0.275655
EMA w/ regional info and B17b MSE(G) -0.384992	3.624504	0.075985	0.275655
EMA w/ regional info and specified MSE(G) -0.384992	3.624504	0.075985	0.275655

<pre>EMA Estimate of MSE[G at-site]</pre>	0.321547
<pre>MSE[G at-site systematic]</pre>	0.321547
Effective Record Length [G at-site]	17.000000
Grubbs-Beck Critical Value	0.000000

⁻⁻⁻ Final Results ---

E-1_Dolores River At Bedrock_Pre.txt << Plotting Positions >> DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

BOLONES KIVEN BEBROCK, CO TEOM FRINGENE TEAM

Events Ana	Ordered Events				
	FLOW		Water	FLOW	H-S
Day Mon Year	CFS	Rank	Year	CFS	Plot Pos
01 Jan 1967	1,690.0	1	1973	9,280.0	5.56
01 Jan 1968	2,340.0	2	1980	8,700.0	11.11
01 Jan 1969	4,040.0	3	1979	8,520.0	16.67
01 Jan 1970	4,090.0	4	1983	8,360.0	22.22
28 Aug 1971	5,690.0	5	1975	8,020.0	27.78
17 Oct 1971	1,920.0	6	1977	6,720.0	33.33
30 Apr 1973	9,280.0	7	1971	5,690.0	38.89
16 Jul 1974	3,430.0	8	1978	4,450.0	44.44
26 Apr 1975	8,020.0	9	1982	4,110.0	50.00
19 May 1976	2,310.0	10	1970	4,090.0	55.56
19 Jul 1977	6,720.0	11	1969	4,040.0	61.11
20 May 1978	4,450.0	12	1974	3,430.0	66.67
19 Apr 1979	8,520.0	13	1968	2,340.0	72.22
22 Apr 1980	8,700.0	14	1976	2,310.0	77.78
04 May 1981	1,290.0	15	1972	1,920.0	83.33
13 Apr 1982	4,110.0	16	1967	1,690.0	88.89
26 Apr 1983	8,360.0	17	1981	1,290.0	94.44
					i

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

Computed Curve FLOW,	Variance Log(EMA) CFS	Percent Chance Exceedance	Confidence 0.05 FLOW, (0.95	
19,533.1 17,181.1 15,381.1 13,560.4 11,112.5 9,214.4	0.03284 0.02314 0.01712 0.01226 0.00769 0.00563	 0.200 0.500 1.000 2.000 5.000 10.000		11,463.7 10,979.2 10,465.3 9,766.3 8,435.5 7,055.1	
7,246.6 4,386.8 2,507.0 1,827.4 1,389.9 806.3	0.00473 0.00516 0.00732 0.01055 0.01571 0.03656	20.000 50.000 80.000 90.000 95.000 99.000	9,755.6 5,822.3 3,397.2 2,541.9 2,013.7 1,324.9	5,509.9 3,262.0 1,638.6 1,011.7 606.4 175.0	

Page 3

E-1	_Dolores River	r At Bedrock_Pre.txt	

<< Systematic Statistics >> DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

Log Transform:
FLOW, CFS
Number of Events

Mean
3.625
Historic Events
0
Standard Dev
0.276
High Outliers
0
Station Skew
-0.385
Low Outliers
0
Regional Skew
--Zero Events
0
Weighted Skew
--Missing Events
0
Adopted Skew
-0.385
Systematic Events
17

⁻⁻⁻ End of Analytical Frequency Curve ---

```
E-1 Dolores River At Bedrock Post.txt
-----
Bulletin 17B Frequency Analysis
   25 Nov 2019 12:59 PM
______
--- Input Data ---
Analysis Name: Middle Dolores River - Pos-Dam
Description:
Data Set Name: DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK
DSS File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\ChannelFormingDischarge.dss
DSS Pathname: /DOLORES RIVER/BEDROCK, CO/FLOW-ANNUAL
PEAK/01jan1900/IR-CENTURY/USGS/
Report File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\Bulletin17Results\Middle_Dolores_River_-_Pos-Dam\Middle_Dolores
River_-_Pos-Dam.rpt
XML File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605 RiversEdge DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\Bulletin17Results\Middle_Dolores_River_-_Pos-Dam\Middle_Dolores
_River_-_Pos-Dam.xml
Start Date:
End Date:
Skew Option: Use Station Skew
Regional Skew: -Infinity
Regional Skew MSE: -Infinity
Plotting Position Type: Hirsch-Stedinger
Upper Confidence Level: 0.05
Lower Confidence Level: 0.95
Display ordinate values using 1 digits in fraction part of value
--- End of Input Data ---
<< EMA Representation of Data >>
DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK
```

Page 1

E-1_Dolores River At Bedrock_Post.txt

		Value		Thresh	old	
Year	Peak	Low	High	Low	High	Type
1984	4,480.0	4,480.0	4,480.0	1.0E-99	1.0E99	Syst
1985	4,510.0	4,510.0	4,510.0	1.0E-99	1.0E99	Syst
1986	5,230.0	5,230.0	5,230.0	1.0E-99	1.0E99	Syst
1987	4,390.0	4,390.0	4,390.0	1.0E-99	1.0E99	Syst
1988	2,340.0	2,340.0	2,340.0	1.0E-99	1.0E99	Syst
1989	1,010.0	1,010.0	1,010.0	1.0E-99	1.0E99	Syst
1990	956.0	956.0	956.0	1.0E-99	1.0E99	Syst
1991	927.0	927.0	927.0	1.0E-99	1.0E99	Syst
1992	3,340.0	3,340.0	3,340.0	1.0E-99	1.0E99	Syst
1993	4,550.0	4,550.0	4,550.0	1.0E-99	1.0E99	Syst
1994	2,080.0	2,080.0	2,080.0	1.0E-99	1.0E99	Syst
1995	3,140.0	3,140.0	3,140.0	1.0E-99	1.0E99	Syst
1996	636.0	636.0	636.0	1.0E-99	1.0E99	Syst
1997	3,780.0	3,780.0	3,780.0	1.0E-99	1.0E99	Syst
1998	3,740.0	3,740.0	3,740.0	1.0E-99	1.0E99	Syst
1999	3,130.0	3,130.0	3,130.0	1.0E-99	1.0E99	Syst
2000	1,260.0	1,260.0	1,260.0	1.0E-99	1.0E99	Syst
2001	720.0	720.0	720.0	1.0E-99	1.0E99	Syst
2002	1,640.0	1,640.0	1,640.0	1.0E-99	1.0E99	Syst
2003	3,290.0	3,290.0	3,290.0	1.0E-99	1.0E99	Syst
2004	573.0	573.0	573.0	1.0E-99	1.0E99	Syst
2005	5,180.0	5,180.0	5,180.0	1.0E-99	1.0E99	Syst
2006	3,310.0	3,310.0	3,310.0	1.0E-99	1.0E99	Syst
2007	3,120.0	3,120.0	3,120.0	1.0E-99	1.0E99	Syst
2008	1,970.0	1,970.0	1,970.0	1.0E-99	1.0E99	Syst
2009	2,150.0	2,150.0	2,150.0	1.0E-99	1.0E99	Syst
2010	2,080.0	2,080.0	2,080.0	1.0E-99	1.0E99	Syst
2011	1,420.0	1,420.0	1,420.0	1.0E-99	1.0E99	Syst
2012	592.0	592.0	592.0	1.0E-99	1.0E99	Syst
2013	3,650.0	3,650.0	3,650.0	1.0E-99	1.0E99	Syst
2014	1,360.0	1,360.0	1,360.0	1.0E-99	1.0E99	Syst
2015	1,930.0	1,930.0	1,930.0	1.0E-99	1.0E99	Syst
2016	1,240.0	1,240.0	1,240.0	1.0E-99	1.0E99	Syst
2017	3,540.0	3,540.0	3,540.0	1.0E-99	1.0E99	Syst
2018	2,080.0	2,080.0	2,080.0	1.0E-99	1.0E99	Syst

Fitted log10 Moments Skew	Mean	Variance	Std Dev
EMA at-site data w/o regional info	3.326322	0.082961	0.288030

E-1_Dolores River At Bedrock_Post.txt

-0.536354			
EMA w/ regional info and B17b MSE(G)	3.326322	0.082961	0.288030
-0.536354			
EMA w/ regional info and specified MSE(G)	3.326322	0.082961	0.288030
-0.536354			

<pre>EMA Estimate of MSE[G at-site]</pre>	0.189389
<pre>MSE[G at-site systematic]</pre>	0.189389
<pre>Effective Record Length [G at-site]</pre>	35.000000
Grubbs-Beck Critical Value	0.000000

--- Final Results ---

<< Plotting Positions >> DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

						-
Events Anal		Ordere	ed Events			
	FLOW		Water	FLOW	H-S	
Day Mon Year	CFS	Rank	Year	CFS	Plot Pos	
18 Apr 1984	4,480.0	1	1986	5,230.0	2.78	
09 Apr 1985	4,510.0	2	2005	5,180.0	5.56	
05 May 1986	5,230.0	3	1993	4,550.0	8.33	
21 May 1987	4,390.0	4	1985	4,510.0	11.11	
05 Nov 1987	2,340.0	5	1984	4,480.0	13.89	
22 Apr 1989	1,010.0	6	1987	4,390.0	16.67	
06 Sep 1990	956.0	7	1997	3,780.0	19.44	
22 May 1991	927.0	8	1998	3,740.0	22.22	
26 May 1992	3,340.0	9	2013	3,650.0	25.00	
27 Apr 1993	4,550.0	10	2017	3,540.0	27.78	
21 May 1994	2,080.0	11	1992	3,340.0	30.56	
22 Jun 1995	3,140.0	12	2006	3,310.0	33.33	Ĺ
14 Sep 1996	636.0	13	2003	3,290.0	36.11	Ĺ
22 May 1997	3,780.0	14	1995	3,140.0	38.89	Ĺ
07 May 1998	3,740.0	15	1999	3,130.0	41.67	Ĺ
25 May 1999	3,130.0	16	2007	3,120.0	44.44	ĺ
01 May 2000	1,260.0	17	1988	2,340.0	47.22	Ĺ
17 Apr 2001	720.0	18	2009	2,150.0	50.00	Ĺ
12 Sep 2002	1,640.0	19	2018	2,080.0	52.78	ĺ
10 Sep 2003	3,290.0	20	2010	2,080.0	55.56	ĺ
21 Sep 2004	573.0	21	1994	2,080.0	58.33	ĺ
26 May 2005	5,180.0	22	2008	1,970.0	61.11	ĺ
06 Aug 2006	3,310.0	23	2015	1,930.0	63.89	ĺ

Page 3

		_ •			
F_1	Dolores	River	Λ+	Radrock	Post.txt
L - I	DOTOLES	IVTACI	~ L	DEUI OCK	T U 3 L • L A L

07 Oct	2006	3,120.0	24	2002	1,640.0	66.67
23 May	2008	1,970.0	25	2011	1,420.0	69.44
25 May	2009	2,150.0	26	2014	1,360.0	72.22
04 Aug	2010	2,080.0	27	2000	1,260.0	75.00
06 Jur	2011	1,420.0	28	2016	1,240.0	77.78
24 Aug	2012	592.0	29	1989	1,010.0	80.56
23 Sep	2013	3,650.0	30	1990	956.0	83.33
05 Aug	2014	1,360.0	31	1991	927.0	86.11
02 Aug	2015	1,930.0	32	2001	720.0	88.89
13 Jur	2016	1,240.0	33	1996	636.0	91.67
07 May	2017	3,540.0	34	2012	592.0	94.44
26 Aug	2018	2,080.0	35	2004	573.0	97.22

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

Computed Curve FLOW,	Variance Log(EMA) CFS	Percent Chance Exceedance	Confidence L 0.05 FLOW, CF	0.95	
9,373.2 8,392.9 7,612.7 6,796.1 5,653.4 4,731.3 3,742.2 2,248.8 1,242.8 880.3 649.9	0.01898 0.01304 0.00935 0.00640 0.00372 0.00263 0.00231 0.00283 0.00420 0.00652 0.01051	0.200 0.500 1.000 2.000 5.000 10.000 20.000 50.000 80.000 90.000	17,462.0 14,072.1 11,863.4 9,909.5 7,623.4 6,014.4 4,533.2 2,770.5 1,563.8 1,142.6 883.1	5,890.1 5,708.2 5,507.9 5,222.3 4,627.0 3,936.8 3,088.8 1,821.8 920.9 574.8 350.0	
351.1 	0.02761	99.000 	545.3 	96.6 	

<< Systematic Statistics >> DOLORES RIVER-BEDROCK, CO-FLOW-ANNUAL PEAK

	Log Transfo		 Number of Even	ts	-
	Mean	3.326	Historic Events	0	
	Standard Dev	0.288	High Outliers	0	
-	Station Skew	-0.536	Low Outliers	0	

Page 4

E-1_Dolores River At Bedrock_Post.txt

Regional Skew		Zero Events	0	
Weighted Skew		Missing Events	0	
Adopted Skew	-0.536	Systematic Events	35	

--- End of Analytical Frequency Curve ---

```
E-2 Dolores River Near Cisco Pre.txt
-----
Bulletin 17B Frequency Analysis
   25 Nov 2019 12:40 PM
______
--- Input Data ---
Analysis Name: Lower Dolores River - Pre-Dam
Description:
Data Set Name: DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\ChannelFormingDischarge.dss
DSS Pathname: /DOLORES RIVER/CISCO, UT/FLOW-ANNUAL PEAK/01jan1900/IR-CENTURY/USGS/
Report File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\Bulletin17Results\Lower_Dolores_River_-_Pre-Dam\Lower_Dolores_R
iver - Pre-Dam.rpt
XML File Name:
\\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan
nelFormingDischarge\Bulletin17Results\Lower Dolores River - Pre-Dam\Lower Dolores R
iver_-_Pre-Dam.xml
Start Date:
End Date:
Skew Option: Use Station Skew
Regional Skew: -Infinity
Regional Skew MSE: -Infinity
Plotting Position Type: Hirsch-Stedinger
Upper Confidence Level: 0.05
Lower Confidence Level: 0.95
Display ordinate values using 1 digits in fraction part of value
--- End of Input Data ---
<< EMA Representation of Data >>
DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK
-----
                                                 Threshold | |
                           Value
```

E-2_Dolores River Near Cisco_Pre.txt

Year	Peak	Low	High	Low	High	Type
1951	2,140.0	2,140.0	2,140.0	1.0E-99	1.0E99	 Syst
1952	11,100.0	11,100.0	11,100.0	1.0E-99	1.0E99	Syst
1953	3,060.0	3,060.0	3,060.0	1.0E-99	1.0E99	Syst
1954	3,220.0	3,220.0	3,220.0	1.0E-99	1.0E99	Syst
1955	3,690.0	3,690.0	3,690.0	1.0E-99	1.0E99	Syst
1956	2,470.0	2,470.0	2,470.0	1.0E-99	1.0E99	Syst
1957	9,500.0	9,500.0	9,500.0	1.0E-99	1.0E99	Syst
1958	17,400.0	17,400.0	17,400.0	1.0E-99	1.0E99	Syst
1959	3,300.0	3,300.0	3,300.0	1.0E-99	1.0E99	Syst
1960	6,160.0	6,160.0	6,160.0	1.0E-99	1.0E99	Syst
1961	3,510.0	3,510.0	3,510.0	1.0E-99	1.0E99	Syst
1962	6,760.0	6,760.0	6,760.0	1.0E-99	1.0E99	Syst
1963	3,080.0	3,080.0	3,080.0	1.0E-99	1.0E99	Syst
1964	5,310.0	5,310.0	5,310.0	1.0E-99	1.0E99	Syst
1965	11,000.0	11,000.0	11,000.0	1.0E-99	1.0E99	Syst
1966	4,040.0	4,040.0	4,040.0	1.0E-99	1.0E99	Syst
1967	2,650.0	2,650.0	2,650.0	1.0E-99	1.0E99	Syst
1968	4,870.0	4,870.0	4,870.0	1.0E-99	1.0E99	Syst
1969	6,480.0	6,480.0	6,480.0	1.0E-99	1.0E99	Syst
1970	7,000.0	7,000.0	7,000.0	1.0E-99	1.0E99	Syst
1971	4,140.0	4,140.0	4,140.0	1.0E-99	1.0E99	Syst
1972	2,410.0	2,410.0	2,410.0	1.0E-99	1.0E99	Syst
1973	14,600.0	14,600.0	14,600.0	1.0E-99	1.0E99	Syst
1974	4,500.0	4,500.0	4,500.0	1.0E-99	1.0E99	Syst
1975	11,900.0	11,900.0	11,900.0	1.0E-99	1.0E99	Syst
1976	3,030.0	3,030.0	3,030.0	1.0E-99	1.0E99	Syst
1977	12,000.0	12,000.0	12,000.0	1.0E-99	1.0E99	Syst
1978	8,740.0	8,740.0	8,740.0	1.0E-99	1.0E99	Syst
1979	13,600.0	13,600.0	13,600.0	1.0E-99	1.0E99	Syst
1980	12,200.0	12,200.0	12,200.0	1.0E-99	1.0E99	Syst
1981	2,110.0	2,110.0	2,110.0	1.0E-99	1.0E99	Syst
1982	6,220.0	6,220.0	6,220.0	1.0E-99	1.0E99	Syst
1983	15,500.0	15,500.0	15,500.0	1.0E-99	1.0E99	Syst

Fitted log10 Moments	Mean	Variance	Std Dev
Skew			
EMA at-site data w/o regional info 0.175441	3.750973	0.079419	0.281813
EMA w/ regional info and B17b MSE(G) 0.175441	3.750973	0.079419	0.281813

E-2_Dolores River Near Cisco_Pre.txt

EMA w/ regional info and specified MSE(G)

3.750973

0.079419 0.281813

0.175441

EMA Estimate of MSE[G at-site] 0.166067 MSE[G at-site systematic] 0.166067 Effective Record Length [G at-site] 33.000000 Grubbs-Beck Critical Value 0.000000

--- Final Results ---

<< Plotting Positions >> DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK

Events Ana	 	Order	 ed Events		- 	
	FLOW		Water	FLOW	H-S	
Day Mon Year	CFS	Rank	Year	CFS	Plot Pos	
28 May 1951	2,140.0	1	1958	17,400.0	2.94	
06 May 1952	11,100.0	2	1983	15,500.0	5.88	
14 Jun 1953	3,060.0	3	1973	14,600.0	8.82	
23 Oct 1953	3,220.0	4	1979	13,600.0	11.76	
10 May 1955	3,690.0	5	1980	12,200.0	14.71	
02 Jun 1956	2,470.0	6	1977	12,000.0	17.65	
07 Jun 1957	9,500.0	7	1975	11,900.0	20.59	
21 Apr 1958	17,400.0	8	1952	11,100.0	23.53	
05 Aug 1959	3,300.0	9	1965	11,000.0	26.47	
11 Apr 1960	6,160.0	10	1957	9,500.0	29.41	
03 May 1961	3,510.0	11	1978	8,740.0	32.35	
21 Apr 1962	6,760.0	12	1970	7,000.0	35.29	
31 Mar 1963	3,080.0	13	1962	6,760.0	38.24	
13 Aug 1964	5,310.0	14	1969	6,480.0	41.18	
24 Apr 1965	11,000.0	15	1982	6,220.0	44.12	
03 Apr 1966	4,040.0	16	1960	6,160.0	47.06	
27 May 1967	2,650.0	17	1964	5,310.0	50.00	
30 May 1968	4,870.0	18	1968	4,870.0	52.94	
23 Apr 1969	6,480.0	19	1974	4,500.0	55.88	
07 May 1970	7,000.0	20	1971	4,140.0	58.82	
28 Mar 1971	4,140.0	21	1966	4,040.0	61.76	
18 Oct 1971	2,410.0	22	1955	3,690.0	64.71	
30 Apr 1973	14,600.0	23	1961	3,510.0	67.65	
26 Apr 1974	4,500.0	24	1959	3,300.0	70.59	
27 Apr 1975	11,900.0	25	1954	3,220.0	73.53	
19 May 1976	3,030.0	26	1963	3,080.0	76.47	

Page 3

E-2_Dolores River Near Cisco_Pre.txt

24 Jul 1977	12,000.0	27	1953	3,060.0	79.41	
17 May 1978	8,740.0	28	1976	3,030.0	82.35	
24 Apr 1979	13,600.0	29	1967	2,650.0	85.29	
23 Apr 1980	12,200.0	30	1956	2,470.0	88.24	
18 Jul 1981	2,110.0	31	1972	2,410.0	91.18	
06 May 1982	6,220.0	32	1951	2,140.0	94.12	
10 May 1983	15,500.0	33	1981	2,110.0	97.06	
						-

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK

-						
	Computed	Variance	Percent	Confidence	Limits	
	Curve	Log(EMA)	Chance	0.05	0.95	
	FLOW,	CFS	Exceedance	FLOW, (CFS	
	41,904.9	0.03484	0.200	159,233.2	25,598.5	
	33,359.2	0.02428	0.500	97,333.2	21,882.2	
	27,712.5	0.01781	1.000	66,849.0	19,128.0	
	22,693.6	0.01260	2.000	45,741.4	16,421.8	
	16,909.7	0.00757	5.000	27,514.4	12,922.0	
	13,092.1	0.00507	10.000	18,686.8	10,334.4	
	9,670.1	0.00356	20.000	12,598.9	7,805.3	
	5,530.1	0.00275	50.000	6,792.8	4,511.0	
	3,248.7	0.00294	80.000	3,976.5	2,584.6	
	2,486.1	0.00376	90.000	3,073.8	1,853.5	
	2,004.0	0.00531	95.000	2,527.8	1,365.2	
	1,355.0	0.01201	99.000	1,870.9	736.1	

<< Systematic Statistics >> DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK

Log Transform: FLOW, CFS	 	Number of Events		
Standard Dev Station Skew Regional Skew Weighted Skew	3.751 0.282 0.175 0.175	Historic Events High Outliers Low Outliers Zero Events Missing Events Systematic Events	0 0 0 0	0

 $$\rm E-2_Dolores$ River Near Cisco_Pre.txt --- End of Analytical Frequency Curve ---

E-2 Dolores River Near Cisco Post.txt -----Bulletin 17B Frequency Analysis 25 Nov 2019 12:48 PM ______ --- Input Data ---Analysis Name: Lower Dolores River - Post-Dam Description: Data Set Name: DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK \\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan nelFormingDischarge\ChannelFormingDischarge.dss DSS Pathname: /DOLORES RIVER/CISCO, UT/FLOW-ANNUAL PEAK/01jan1900/IR-CENTURY/USGS/ Report File Name: \\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan nelFormingDischarge\Bulletin17Results\Lower_Dolores_River_-_Post-Dam\Lower_Dolores_ River - Post-Dam.rpt XML File Name: \\den-gissrv1\gisdata\PROJECTS\10180605_RiversEdge_DoloresRiver\models\HEC-SSP\Chan nelFormingDischarge\Bulletin17Results\Lower Dolores River - Post-Dam\Lower Dolores River - Post-Dam.xml Start Date: End Date: Skew Option: Use Station Skew Regional Skew: -Infinity Regional Skew MSE: -Infinity Plotting Position Type: Hirsch-Stedinger Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 1 digits in fraction part of value --- End of Input Data ---<< EMA Representation of Data >> DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK -----Threshold | | Value

E-2_Dolores River Near Cisco_Post.txt

Year	Peak	L-2_00101 e3 10	High	Low	High	Type
1984	14,700.0	14,700.0	14,700.0	1.0E-99	1.0E99	Syst
1985	11,200.0	11,200.0	11,200.0	1.0E-99	1.0E99	Sýst
1986	7,890.0	7,890.0	7,890.0	1.0E-99	1.0E99	Syst
1987	8,440.0	8,440.0	8,440.0	1.0E-99	1.0E99	Syst
1988	2,520.0	2,520.0	2,520.0	1.0E-99	1.0E99	Syst
1989	2,360.0	2,360.0	2,360.0	1.0E-99	1.0E99	Syst
1990	1,340.0	1,340.0	1,340.0	1.0E-99	1.0E99	Syst
1991	2,670.0	2,670.0	2,670.0	1.0E-99	1.0E99	Syst
1992	6,760.0	6,760.0	6,760.0	1.0E-99	1.0E99	Syst
1993	13,600.0	13,600.0	13,600.0	1.0E-99	1.0E99	Syst
1994	3,760.0	3,760.0	3,760.0	1.0E-99	1.0E99	Syst
1995	6,300.0	6,300.0	6,300.0	1.0E-99	1.0E99	Syst
1996	1,260.0	1,260.0	1,260.0	1.0E-99	1.0E99	Syst
1997	6,600.0	6,600.0	6,600.0	1.0E-99	1.0E99	Syst
1998	7,570.0	7,570.0	7,570.0	1.0E-99	1.0E99	Syst
1999	4,490.0	4,490.0	4,490.0	1.0E-99	1.0E99	Syst
2000	2,830.0	2,830.0	2,830.0	1.0E-99	1.0E99	Syst
2001	2,140.0	2,140.0	2,140.0	1.0E-99	1.0E99	Syst
2002	3,380.0	3,380.0	3,380.0	1.0E-99	1.0E99	Syst
2003	3,680.0	3,680.0	3,680.0	1.0E-99	1.0E99	Syst
2004	1,710.0	1,710.0	1,710.0	1.0E-99	1.0E99	Syst
2005	9,420.0	9,420.0	9,420.0	1.0E-99	1.0E99	Syst
2006	1,750.0	1,750.0	1,750.0	1.0E-99	1.0E99	Syst
2007	6,100.0	6,100.0	6,100.0	1.0E-99	1.0E99	Syst
2008	4,750.0	4,750.0	4,750.0	1.0E-99	1.0E99	Syst
2009	3,870.0	3,870.0	3,870.0	1.0E-99	1.0E99	Syst
2010	4,520.0	4,520.0	4,520.0	1.0E-99	1.0E99	Syst
2011	3,710.0	3,710.0	3,710.0	1.0E-99	1.0E99	Syst
2012	1,540.0	1,540.0	1,540.0	1.0E-99	1.0E99	Syst
2013	4,600.0	4,600.0	4,600.0	1.0E-99	1.0E99	Syst
2014	2,430.0	2,430.0	2,430.0	1.0E-99	1.0E99	Syst
2015	7,600.0	7,600.0	7,600.0	1.0E-99	1.0E99	Syst
2016	2,790.0	2,790.0	2,790.0	1.0E-99	1.0E99	Syst
2017	4,540.0	4,540.0	4,540.0	1.0E-99	1.0E99	Syst
2018	1,010.0	1,010.0	1,010.0	1.0E-99	1.0E99	Syst
1						

Fitted log10 Moments Skew	Mean	Variance	Std Dev
EMA at-site data w/o regional info -0.050368	3.599489	0.089634	0.299389

	E-2_Dolores River Near	Cisco_Post.txt		
EMA w/ regional info	and B17b MSE(G)	3.599489	0.089634	0.299389
-0.050368				
EMA w/ regional info	and specified MSE(G)	3.599489	0.089634	0.299389
-0.050368				

<pre>EMA Estimate of MSE[G at-site]</pre>	0.147819
<pre>MSE[G at-site systematic]</pre>	0.147819
Effective Record Length [G at-site]	35.000000
Grubbs-Beck Critical Value	0.000000

--- Final Results ---

<< Plotting Positions >> DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK

Events Ana	 	Order	 ed Events		- 	
	FLOW		Water	FLOW	H-S	
Day Mon Year	CFS	Rank	Year	CFS	Plot Pos	
						ļ
15 May 1984	14,700.0	1	1984	14,700.0	2.78	ļ
11 Apr 1985	11,200.0	2	1993	13,600.0	5.56	ļ
06 May 1986	7,890.0	3	1985	11,200.0	8.33	
27 Apr 1987	8,440.0	4	2005	9,420.0	11.11	
06 Nov 1987	2,520.0	5	1987	8,440.0	13.89	
21 Apr 1989	2,360.0	6	1986	7,890.0	16.67	
08 Jul 1990	1,340.0	7	2015	7,600.0	19.44	
08 Apr 1991	2,670.0	8	1998	7,570.0	22.22	
26 May 1992	6,760.0	9	1992	6,760.0	25.00	
17 May 1993	13,600.0	10	1997	6,600.0	27.78	
22 May 1994	3,760.0	11	1995	6,300.0	30.56	
18 Jun 1995	6,300.0	12	2007	6,100.0	33.33	
17 May 1996	1,260.0	13	2008	4,750.0	36.11	
23 May 1997	6,600.0	14	2013	4,600.0	38.89	
03 May 1998	7,570.0	15	2017	4,540.0	41.67	
25 May 1999	4,490.0	16	2010	4,520.0	44.44	
10 Apr 2000	2,830.0	17	1999	4,490.0	47.22	
10 Jul 2001	2,140.0	18	2009	3,870.0	50.00	
12 Sep 2002	3,380.0	19	1994	3,760.0	52.78	
11 Sep 2003	3,680.0	20	2011	3,710.0	55.56	
26 Mar 2004	1,710.0	21	2003	3,680.0	58.33	
26 May 2005	9,420.0	22	2002	3,380.0	61.11	
07 Aug 2006	1,750.0	23	2000	2,830.0	63.89	
07 Oct 2006	6,100.0	24	2016	2,790.0	66.67	

Page 3

F 2 D-1	D :	A1	C:	D + + - +
E-2 Dolores	Kiver	wear	C.1.S.CO	POST.TXT

	22 May	2008	4,750.0	25	1991	2,670.0	69.44
	15 May	2009	3,870.0	26	1988	2,520.0	72.22
	18 Apr	2010	4,520.0	27	2014	2,430.0	75.00
	08 Jun	2011	3,710.0	28	1989	2,360.0	77.78
	29 Mar	2012	1,540.0	29	2001	2,140.0	80.56
	23 Sep	2013	4,600.0	30	2006	1,750.0	83.33
	11 Apr	2014	2,430.0	31	2004	1,710.0	86.11
	11 Jun	2015	7,600.0	32	2012	1,540.0	88.89
	13 Jun	2016	2,790.0	33	1990	1,340.0	91.67
	08 May	2017	4,540.0	34	1996	1,260.0	94.44
	27 Aug	2018	1,010.0	35	2018	1,010.0	97.22
-							

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >>
DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK

Computed Curve FLOW,	Variance Log(EMA) CFS	Percent Chance Exceedance	Confidence 0.05 FLOW,	0.95	
	0.03244 0.02268 0.01670 0.01188 0.00723 0.00494 0.00358 0.00292 0.00334 0.00443			17,280.1 15,219.5 13,580.3 11,866.4 9,487.1 7,626.2 5,752.1 3,240.5 1,722.5 1,165.3	
1,267.0 779.7 	0.00635 0.01445	95.000 99.000 	1,651.9 1,122.9 	802.2 354.7	
I			I		

<< Systematic Statistics >> DOLORES RIVER-CISCO, UT-FLOW-ANNUAL PEAK

	Log Transform: FLOW, CFS		Number of Even	nts	 -
	Mean	3.599	Historic Events	0	
	Standard Dev	0.299	High Outliers	0	İ
ĺ	Station Skew	-0.050	Low Outliers	0	ĺ
	Regional Skew		Zero Events	0	1

Page 4

E-2_Dolores River Near Cisco_Post.txt

1	Weighted Skew		Missing Events	0
	Adopted Skew	-0.050	Systematic Events	35
-				

--- End of Analytical Frequency Curve ---