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Abstract

Few regions have been more severely impacted by climate change in the USA than the Desert
Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global
temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the
endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate
change. Highly significant correlations between present abundance and estimates of genomic vul-
nerability – the mismatch between current and predicted future genotype–environment relation-
ships – indicate small, fragmented populations of the southwestern willow flycatcher will have to
adapt most to keep pace with climate change. Links between climate-associated genotypes and
genes important to thermal tolerance in birds provide a potential mechanism for adaptation to
temperature extremes. Our results demonstrate that the incorporation of genotype–environment
relationships into landscape-scale models of climate vulnerability can facilitate more precise pre-
dictions of climate impacts and help guide conservation in threatened and endangered groups.
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INTRODUCTION

The effects of climate change on biodiversity are forecast to
be one of the leading causes of extinction over the next cen-
tury (Dawson et al. 2011; Warren et al. 2013; Pacifici et al.
2015; Urban 2015). Evidence of climate-induced local extinc-
tions are now widespread among plant and animal species
(Sinervo et al. 2010; Wiens 2016) and the velocity of climate
change impacts in desert biomes is predicted to be among the
fastest (Loarie et al. 2009). Recent climate change has altered
community composition by favouring generalist taxa over
habitat specialists and rare species (Men�endez et al. 2006;
Estrada et al. 2016), but the ability to measure climate
impacts below the species level is often lacking. Fine-scale
estimates of vulnerability to climate change require an under-
standing of both the capacity for populations to shift their
ranges to track climate conditions, as well as their capacity to
tolerate climate alterations in situ via phenotypic plasticity or
adaptation. Although intraspecific variation in climate toler-
ances may factor critically in the ability of species to move or
adapt to environmental change, most modelling efforts ignore
local adaptation. However, genomic tools are facilitating
assessments of local adaptation in non-model species with
increasing reliability (Savolainen et al. 2013) and such

information can be used to improve climate vulnerability
estimates. Here, we combine genome-wide sequencing with
environmental data to improve predictions of how genotype–
environment relationships may be disrupted by future envi-
ronmental change in an endangered songbird native to the
Desert Southwest of the USA, the southwestern willow fly-
catcher.
Until recently, assessing species vulnerability to climate

change focused largely on using current range–climate associa-
tions to predict distributions under models of future climate
(Parmesan & Yohe 2003; Pacifici et al. 2015). However, com-
plex biotic interactions (competition, specialisation, co-evolu-
tion, etc.) and or limits to dispersal imposed by physical
barriers may limit range shifts, making it important to under-
stand a species’ potential to adapt to climate change in situ
(Williams et al. 2008). Methodologies in the field of ecological
genomics have provided tools to help incorporate information
on local adaptation into climate vulnerability models by iden-
tifying regions where climate-induced selective pressure will be
highest (Fitzpatrick & Keller 2015), but such methods have
yet to be widely implemented. These approaches calculate the
difference between current genotype–environment relation-
ships and those predicted under future climate change to iden-
tify the geographic regions of greatest mismatch. More
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specifically, they can be used to ask, ‘How much would allele
frequencies across the range have to change to keep pace with
projected changes in climate?’. In the absence of a range shift,
populations in regions where the mismatch is greatest may
either need to adapt or suffer population declines, as was
recently shown in the North American songbird, the Yellow
warbler (Setophaga petechia) (Bay et al. 2018).
Few regions in North America will be more severely

impacted by temperature extremes than the Desert Southwest
(Diffenbaugh et al. 2008; Hsiang et al. 2017). While most
large-scale analyses of climate impacts in birds have focused
on changes in geographic ranges or shifts in migratory phe-
nology to better synchronise arrival times with earlier spring
onset (Both & Visser 2001; Both et al. 2006; Stephens et al.
2016), these changes will do little to offset the impact of sum-
mer heat waves in desert regions. Recent work suggests that
small desert passerines, in particular, will experience higher
rates of mortality due to dehydration and hyperthermia as the
frequency of extreme temperature events increases (Albright
et al. 2017). In addition, work in poultry has shown that high
temperatures can cause heart strain, or in some cases heart
failure, as birds attempt to dissipate heat through increased
blood circulation. Furthermore, this work has shown that
such stress is not just physiological in nature, but is associated
with differential expression in a suite of c. 300 genes (Zhang
et al. 2017). Based on these studies, we predict that genes
important to thermal cooling will be under strong selection in
small desert passerines as the frequency of heat waves
increases.
The endangered southwestern willow flycatcher provides

an example of a desert passerine for which a better under-
standing of climate vulnerability has important implications
for its conservation. This desert subspecies is one of four
subspecies within the willow flycatcher whose combined
ranges span the continental USA (Fig. 1; Pacific Northwest-
ern form, E. t. brewsteri; Western Central form, E. t. adas-
tus; and Eastern form, E. t. traillii). The presence of the
southwestern willow flycatcher in particular is associated
with riparian woodlands along streams and waterways
(Sedgwick 2000) and such habitats are thought to provide
important refuges from temperature extremes (Chen et al.
1999; McLeod et al. 2008). At the turn of the century, the
southwestern willow flycatcher was described as common
wherever its specialised habitat existed (Grinnell & Miller
1944), but by 1995 when it was listed under the Endan-
gered Species Act, the number of known breeding pairs had
been reduced to between 300 and 500 (Unitt 1987; Sogge
et al. 1997). Population declines have been attributed to loss
of riparian habitats in the Southwest following dam-build-
ing, water diversions, groundwater pumping, urbanisation,
agricultural development and livestock grazing (Service
2002), but the role that climate change may have played in
declines is unknown. Some researchers have questioned the
subspecies designation of the southwestern willow flycatcher,
suggesting that it is a peripheral population of an otherwise
widespread species with no evidence for ecological distinc-
tiveness (Zink 2015), although this suggestion has been
questioned (Theimer et al. 2016). Here, we use ecological
genomics to investigate the potential for ecological

distinctiveness within the willow flycatcher as well as the
potential role of rising global temperatures on its future
persistence.
To investigate potential genomic signals of local adaptation

in the willow flycatcher, we tested for significant genotype–en-
vironment correlations using 105 000 SNP markers from 219
individuals spanning 24 populations across the breeding range
(Fig. 1; Table 1). To identify the genomic locations of cli-
mate-associated SNPs in relation to genes and gene regions
potentially important to adaptation under climate change, we
also assembled and annotated the first willow flycatcher gen-
ome. Significant genotype–environment correlations for a sub-
set of loci were further validated by genotyping an additional
274 individuals spanning mostly new 25 populations. To iden-
tify geographical regions where the mismatch between current
and future genotype-environment relationships is predicted to
be the greatest we used gradient forest modeling to calculate
an index of genomic vulnerability (Bay et al 2018). Lastly, we
assessed the relationship between our estimates of genomic
vulnerability and abundance across the range in order to
assess which subspecies may be most vulnerable to future cli-
mate change.

MATERIALS AND METHODS

Sample collection and DNA extraction

We compiled a collection of 493 willow flycatcher blood or
tissue samples from 41 locations across the breeding range
using a combination of samples from previous studies,
museum donations and new field collections (Paxton 2000).
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Figure 1 Willow Flycatcher Range Map and Sampling. Open and closed

circles represent the data used in distance matrix comparison tests, while

only populations represented by closed circles were used in the Gradient
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Two hundred and nineteen individuals from 24 populations
were used to test for genome-wide genotype–environment cor-
relations, while 274 individuals spanning 25 populations (eight
replicate and 17 new populations) were used to validate a sub-
set of significant genotype–environment correlations identified
in the genome-wide analysis (Ntotal_indiv = 493; Ntotal_pops = 41;
Table 1; Fig. 1). The willow flycatcher range map and associ-
ated subspecies boundaries was taken from the most current
United States Geological Survey map used for willow fly-
catcher surveys (Sogge et al. 1997). Samples within one degree
latitude and longitude and with no more than 10% difference

in any environmental variable (as indicated by our environ-
mental analysis, below) were lumped into a single population.
DNA was purified using the QiagenTM DNeasy Blood and Tis-
sue extraction kit and quantified using the Qubit� dsDNA HS
Assay kit (Thermo Fisher Scientific, USA).

Genome sequencing, assembly and annotation

The genomic DNA library was created using a single south-
western willow flycatcher individual from Roosevelt Lake, AZ
and the Illumina TruSeq DNA PCR-Free LT kit (Illumina,

Table 1 Sample location information. NRAD_nofilter = number of individuals for genome-wide RAD dataset before filtering for read depth and missing data,

NRAD_filter = number of remaining post-filtering, Nvalidation = number of individuals in the SNP validation dataset

Location Latitude Longitude NRAD_nofilter NRAD_filter Nvalidation

East Pima, AZ 32.83 �109.7 _ _ 8

San Pedro/Gila River

confluence, AZ

32.98 �110.77 18 14 17

West Fort Ditch, NM 33.04 �108.54 _ _ 11

San Carlos Reservation, AZ 33.2 �110.44 _ _ 30

San Diego, CA 33.28 �117.37 14 4 6

Roosevelt Lake, AZ 33.77 �111.24 20 10 18

White Mountains, AZ 34.00 �109.00 15 13 15

Camp Verde, AZ 34.56 �111.84 _ _ 17

Santa Ynez River, CA 34.62 �120.18 _ _ 8

Zuni/Nutria Diversion

Reservation, NM

35.24 �108.64 _ _ 8

South Fork Kern River, CA 35.66 �118.46 20 13 11

Southern Ute Reservation, CO 37.12 �107.59 _ _ 6

Pahranagat Lake NWR, NV 37.32 �115.13 _ _ 6

Owen’s River at Bishop, CA 37.41 �118.48 _ _ 12

Alamosa National Wildlife

Refuge, CO

37.5 �106 _ _ 17

Beaver Creek, CO 37.68 �108.38 _ _ 6

Clear Creek, CO 37.79 �108.24 _ _ 8

Baltimore Area, MD 39.4 �76.99 _ _ 8

Escalante State Wildlife

Area, CO

39.47 �106.37 _ _ 13

Fish Creek, UT 39.78 �111.20 14 11 _

Rio Blanco Lake, CO 40.09 �108.21 _ _ 7

Orefield, PA 40.66 �75.67 21 21 _

White River Confl. to the

Green River, UT

40.67 �109.68 7 6 _

Willow Slew, IN 40.98 �87.53 4 4 _

Bigelow Meadows, CA 41.26 �121.88 7 6 _

Agusta, MI 42.3 �85.32 _ _ 9

Mink Creek, ID 42.75 �112.39 6 6 _

Malheur NWR, OR 42.83 �118.87 7 6 _

FCTC-SABO, MI 42.84 �85.30 4 4 6

Jones Creek, OR 43.04 �123.97 10 10 _

Little White River Rec.

Area, SD

43.17 �101.53 4 4 6

Black Creek, NY 43.38 �73.91 6 4 _

Fall Creek 2, ID 43.43 �111.40 7 7 _

Marion Forks, OR 44.37 �122.02 _ _ 14

Finley NWR, OR 44.41 �123.35 3 0 _

Priem Road, OR 44.78 �123.38 7 6 _

Elm Creek, MN 45.13 �93.45 4 0 6

Waubay NWR, SD 45.40 �97.33 4 4 _

Hamon Memorial, MT 45.95 �114.13 5 4 _

Carbondale (Edgwick), WA 47.09 �122.05 8 7 _

Fork clearcut, WA 47.97 �124.40 4 4 _

Total 219 168 273
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Hayward, CA), with adjustments. One ug of DNA was
diluted in 100 lL of AE buffer and fragmented to an average
insert size of c. 400 bp. The resulting library was sequenced
on two lanes of an Illumina HiSeq2500 using 250 bp paired-
end sequencing at the QB3 Vincent J. Coates Genomics
Sequencing Laboratory, UC Berkeley. Two mate-pair libraries
were also created, using 4 and 8 kb inserts and sequenced on
one-third of a Illumina HiSeq 2500 lane, using 100 bp paired-
end sequencing at the Huntsman Cancer Center at the
University of Utah. The 250 bp paired-end reads were used to
assemble contigs with the Discovar DeNovo assembler from
the Broad Institute (http://www.broadinstitute.org), discarding
contigs less than 1000 bp in length. Mate-pair reads were
trimmed and separated from paired-end reads using NxTrim
(O’Connell et al. 2015) and contigs were scaffolded with
SSPACE (overlap requirement k = 3) (Boetzer et al. 2010)
using both paired-end and mate-pair libraries. We used reapr
(Hunt et al. 2013) and mapping of the 8 kb insert library to
break the assembly at likely error regions. SSPACE scaffold-
ing was repeated with k = 5 and scaffolds < 5kbp were dis-
carded for the final assembly.
For annotation purposes, repetitive regions were replaced

with N’s using RepeatMasker (-species birds) (Tarailo-Graovac
& Chen 2009). For annotation, we used two different ab initio
gene predictions within the MAKER pipeline (Cantarel et al.
2008): SNAP and AUGUSTUS. SNAP was trained iteratively
using Zebra Finch cDNA and protein sequences downloaded
from Ensembl and AUGUSTUS was run using the available
chicken training dataset. We used Interproscan (Zdobnov &
Apweiler 2001) to add Pfam protein annotation and gene ontol-
ogy (GO) terms and identified 15 489 genes. Scaffolds were
aligned to the Zebra Finch genome (version 3.2.4) using the
software promer, part of the MUMmer package (Delcher et al.
2003). After alignment, we retained the longest consistent align-
ment (�q) for each chromosome while filtering for similarity
(�i 50) and alignment length (�l 500). We then determined the
location of the longest alignment for each scaffold and ordered
scaffolds accordingly for visualisation purposes.

SNP discovery and SNP filtering

Genome scans on 219 individuals were conducted following
the BestRAD library preparation protocol with some modifi-
cations (Ali et al. 2016). 100 ng of DNA was digested using
the SbfI restriction enzyme (New England Biolabs, USA) and
fragments were ligated with SbfI adapters prepared with
biotinylated ends. Adapter-ligated samples were pooled and
cleaned using 1X Agencourt� AMPure XP beads (Beckman
Coulter Inc., USA). All DNA fragments were sheared to an
average length of 400 bp and adapter-ligated fragments were
bound to M-280 streptavidin magnetic Dynabeads (Life Tech-
nologies, USA). Blunt end repair and ligation of NEBNext
Adapters was performed using the Illumina NEBNext Ultra
DNA Library Prep Kit (New England Biolabs, USA) and
Agencourt� AMPure XP beads (Beckman Coulter Inc, USA)
were used to size select an average of 500 bp fragments. The
final library was cleaned and run on a Bioanalyzer at the
UCLA Technology Center for Genomics & Bioinformatics to
check for the size distribution and the absence of

contaminants. Two libraries, each comprised of 96 individu-
als, were initially sequenced in two lanes of 100 bp paired-end
reads on an Illumina HiSeq 2500 at the UC Davis Genome
Center. In a third lane, 69 individuals with low coverage from
the first two libraries were re-sequenced along with an addi-
tional 27 new individuals.
The program Stacks (Catchen et al. 2013) was used to

demultiplex, filter and trim adapters from the data with the
process_radtags function and to remove duplicate read pairs
using the clone_filter function. Reads were mapped to our
genome assembly using bowtie2 (Langmead & Salzberg 2012)
and the Haplotype Caller in the Genome Analysis Toolkit
was used to identify single nucleotide polymorphisms (SNPs),
following best practices from the Broad Institute (http://
www.broadinstitute.org). Finally, we discarded low-quality
and rare variants (genotype quality<30; depth<8; minor allele
frequency<0.01), as well as indels and non-biallelic SNPs
using vcftools (Danecek et al. 2011). We used the R package
genoscapeRtools (https://doi.org/10.5281/zenodo.848279) to
visualise the tradeoff between discarding SNPs with low cov-
erage and discarding individuals with missing genotypes in
order to determine the final number of SNPs and individuals
retained (Fig. S1).

Environmental data

For each sampling location, we obtained environmental data
from publicly available databases. These 25 variables included
19 climate variables downloaded from WorldClim (Hijmans
et al. 2005) which represented average climate between the
years 1960 and 1990, as well as vegetation indices (Carroll
et al. 2004) (NDVI and NDVIstd, average for the year 2003),
Tree Cover (Sexton et al. 2013) and elevation data from the
Global Land Cover Facility (http://www.landcover.org) and a
measure of surface moisture characteristics from the NASA
Scatterometer Climate Record Pathfinder project (QuickSCAT
mean and standard deviation, downloaded from scp.byu.edu).

Assessing the role of geography and environment

To assess the relative contributions of geography and the
environment to genetic divergence in the willow flycatcher,
we compared genetic, environmental and geographic dis-
tance matrices and used multiple tests designed to account
for spatial autocorrelation. For locations with > 4 individu-
als (Table 1), we calculated pairwise FST across all quality-
filtered SNPs using the R package SNPrelate (Zheng et al.
2012) and pairwise geographic distances from longitude and
latitude using the R package geosphere (Hijmans et al.
2012). We then calculated environmental distance between
each pair of sites by removing highly correlated climate
variables (Pearson’s r > 0.7; Table 2; Table S1), scaling and
centring each environmental variable to account for differ-
ences in magnitude, and then calculating pairwise Euclidean
differences between sites. Mantel, Partial Mantel and multi-
ple regression of distance matrices were used to test for
associations between linearised FST (FST/1�FST) and genetic
and environmental distance after accounting for geographic
distance.
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Gradient forest prediction of genomic mismatch

We identified the environmental variables that best explained
genetic variation using gradient forest analysis with the R
package gradientForest (Ellis et al. 2012). Because rare alleles
are more likely to yield false positives, we only used SNPs
with minor allele frequency > 10%. The gradient forest analy-
sis (ntree = 500, nbin = 201, corr.threshold = 0.5) provided a
ranked list based on the relative predictive power of all envi-
ronmental variables (Table 2). To ensure that our model was
explaining more variation than we would expect by chance,
we compared the number of SNPs with positive R2 and the
mean R2 across these ‘predictive’ loci (those with positive R2)
to 10 runs with randomised environments. Visualisation of the
gradient forest model across the range of the willow flycatcher
(Buschke et al. 2016) was done by generating and extracting
uncorrelated BIOCLIM values for 100 000 random points.
The final gradient forest model was used to predict the geno-
mic composition from uncorrelated environmental variables
for each random point (Table 2). Principal components analy-
sis (PCA) was used to summarise values. To visualise the dif-
ferent adaptive environments across the breeding range,
colours were assigned based on the top three principal compo-
nents axes, as recommended by the authors (Ellis et al. 2012).
We extended the gradient forest analysis to predict ‘genomic

vulnerability’ using the method presented by Fitzpatrick &
Keller (2015). Here, ‘genomic vulnerability’ (termed ‘genetic
offset’ by Fitzpatrick and Keller) is a measure of the mis-
match between genotype and future predicted environment

using associations across current gradients as a baseline. We
used the baseline gradient forest model calculated using cur-
rent BIOCLIM values to predict genomes under future envi-
ronmental conditions (based on RCP 2.6 2050 projections) at
the same 100 000 random points. The Euclidean distance
between these weighted current and predicted values is what
we refer to as ‘genomic vulnerability’ (Bay et al. 2018).

Identification of SNPs as candidates for environmental selection

To identify SNPs (with minor allele frequency > 0.1) that were
most highly associated with the top environmental variables
while accounting for underlying population structure, we used
Latent Factor Mixed Models (LFMM) (Frichot et al. 2013).
For each of the top eight environmental variables from the
gradient forest analysis, we ran five separate MCMC runs
with a latent factor of K = 4, based on the number of
reported subspecies and previous morphological and genetic
analysis based upon neutral markers (Paxton 2000). P-values
from all five runs were combined and adjusted for multiple
tests using a false discovery rate (FDR) correction. We anno-
tated each significant SNP with genes within 25 kb upstream
or downstream which we assume is within the distances before
which LD should break down (Backstrom et al. 2006).

Validation of climate-associated SNPs

To validate genotype–environment correlations identified in
the LFMM analysis, we genotyped the top-ranking 18 SNPS

Table 2 Environmental variables used in the gradient forest analysis, ordered by ranked importance of variables and the cumulative contribution of each

variable. The top eight environmental variables represent 49% of the total

Variable Definition GF rank Cumulative contribution

BIO11* Mean temperature of coldest quarter 8.03E-04 7.66

BIO10 Mean temperature of warmest quarter 6.71E-04 14.40

BIO1 Annual mean temperature 6.41E-04 21.05

BIO5* Max temperature of warmest month 6.40E-04 27.47

BIO6 Min temperature of coldest month 5.79E-04 32.90

BIO4* Temperature seasonality (standard deviation *100) 5.20E-04 38.30

BIO9 Mean temperature of driest quarter 4.91E-04 43.64

BIO17* Precipitation of driest quarter 4.78E-04 48.76

NDVI_Mean Vegetation indices 4.50E-04 53.18

BIO15 Precipitation seasonality (Coefficient of Variation) 4.28E-04 57.39

BIO7 Temperature annual range (BIO5-BIO6) 3.75E-04 61.41

TreeCover Tree cover 3.72E-04 65.41

BIO14 Precipitation of driest month 3.64E-04 69.36

BIO16 Precipitation of wettest quarter 3.09E-04 72.75

BIO19 Precipitation of coldest quarter 2.96E-04 76.04

BIO2* Mean diurnal range (Mean of monthly (max temp – min temp)) 2.90E-04 79.31

BIO8* Mean temperature of wettest quarter 2.87E-04 82.49

BIO13 Precipitation of wettest month 2.82E-04 85.63

STM Elevation 2.21E-04 88.36

BIO12 Annual precipitation 2.12E-04 90.98

BIO3 Isothermality (BIO2/BIO7) (* 100) 2.07E-04 93.54

QuickScat Surface moisture characteristics 2.02E-04 95.87

BIO18 Precipitation of warmest quarter 1.92E-04 98.17

NDVI_StDev Vegetation indices 1.81E-04 100.00

*Top-ranked, uncorrelated climate variables used for Gradient Forest mapping and distance matrix comparison analyses.

These variables were selected by moving down the list of ranked importance for the full model and discarding variables highly correlated (Pearson’s r > 7)

with a variable of higher importance.

© 2018 John Wiley & Sons Ltd/CNRS

Letter Climate vulnerability in an endangered songbird 1089



that were significantly associated with the top eight climate
variables and could be converted to SNPtype Assays in an
additional 274 breeding individuals from 25 locations. DNA
was extracted from feather samples using the KingFisherTM

Cell and Tissue DNA Kit and SNP genotyping was per-
formed on the FluidigmTM (ThermoFisher Scientific, USA)
96.96 IFC controller (Fluidigm Inc., San Francisco, CA,
USA) following manufacturer guidelines. Nine individuals
with > 8% of missing data were removed from downstream
analysis and final allele frequencies were calculated for each
SNP at each location. Standard linear regression was used to
test for significant associations between climate and allele fre-
quency (FDR-corrected P-value < 0.05).

Association between genomic vulnerability and abundance

To assess the relationship between genomic vulnerability and
abundance and determine which subspecies may be most vul-
nerable to future climate change, we correlated estimates of
genomic vulnerability with willow flycatcher relative abun-
dance from the North American Breeding Bird Survey (BBS)
for 2011–2015, including all sites where the species was
detected at least once during the history of the survey (Par-
dieck et al. 2017). In order to associate the two datasets, vec-
tor-based BBS relative abundance estimates derived from
inverse-distance weighting interpolation (2010–15; Sauer et al.
2017; https://www.mbr-pwrc.usgs.gov/bbs/shape_ra15.html) of
route-level mean counts were converted to raster format with
grid resolution of approximately 15 9 15 km. We then
extracted values of relative abundance and genomic vulnera-
bility for grid cells including BBS routes using bilinear inter-
polation (Hijmans 2015). For cells with BBS routes where
detections had been recorded, but for which model-based esti-
mates of abundance were not available due to low abundance
and isolation from other sites with detections, we assigned
mean count values (c. 9% of routes; mean count = 0.06). Sig-
nificant differences in genomic vulnerability between sub-
species were assessed using boxplots with 95% confidence
intervals around median vulnerability scores (Chambers et al.
1983).

RESULTS

Genome assembly, SNP discovery and SNP/population filtering

The final southwestern willow flycatcher genome assembly
was 1.2 Gb in length and consisted of 7791 scaffolds (contig
N50 = 79 613 bp; scaffold N50 = 895,074 bp). In total, we
identified 6 355 061 SNPs across the genome. Discarding low
quality SNPs and low-coverage individuals resulted in a final
set of 105 000 SNPs and 175 individuals (Fig. S1), with less
than 7.4% missing genotypes per SNP (mean = 2.3%),
< 15.6% missing SNPs per individual (mean = 2.3%) and
minor allele frequency greater than 1%. Because FST is robust
to low sample size when a large number of SNPs are
employed (Nazareno et al. 2017), we retained all populations
with a minimum of four (mean = 8) individuals for analysis
based upon FST (distance matrix comparisons), resulting in a
final dataset of 168 individuals from 22 sampling locations.

Alternatively, to avoid bias associated with low sample size in
analyses requiring estimates of allele frequency (Gradient For-
est and LFMM), we used only populations with a minimum
of six individuals (average = 10), resulting in a final dataset of
136 individuals from 14 sampling locations (Fig. 1; Table 1).

Assessing the role of geography and environment in shaping genetic

structure

Pairwise FST across all quality-filtered SNPs ranged from 0 to
0.11 (Table S2). Mantel tests revealed highly significant corre-
lations between genetic and geographic distance (r = 0.70,
P = 1 9 10�6), genetic and environmental distance (r = 0.56,
P = 1 9 10�6) and geographic and environmental distance
(r = 0.42, P = 1.8 9 10�4) (Fig. S2A). Partial Mantel tests
revealed the correlation between genetic and environmental
distance remained significant after accounting for the relation-
ship between genetic and geographic distance (r = 0.42,
P = 3 9 10�4; Fig. S2), and both geographic and environmen-
tal distances were significant in a multiple regression of dis-
tance matrices (MRM: R2=0.59; geography P = 1 9 10�5;
environment P = 3 9 10�5).

Gradient forest mapping of genotype–environment correlations

More genetic variation was explained by our gradient forest
than those generated under randomised environments
(Fig. S3). A total of 9015 SNPs were correlated with environ-
ment with mean R2 = 0.18, compared to a mean R2 of 0.13–
0.15 across 3489–5633 SNPs for randomised data. We used
gradient forest models to identify which climate and vegeta-
tion variables were most important in structuring genetic vari-
ation in the willow flycatcher and visualise climate-associated
allelic variation across the breeding range (Fig. 2a and b).
Seven temperature variables and one precipitation variable
were most strongly correlated with genetic variation across
the breeding range of willow flycatchers (Table 2). Mapping
principal components of gradient forest output revealed puta-
tive signals of local adaptation across the US Southwest, the
East, the Inter-Mountain West and the Pacific Northwest geo-
graphic regions (Fig. 2c).

Identification of candidate SNPs for environmental selection

To investigate genomic regions potentially involved in climate
adaptation, we identified genomic regions associated with the
top eight climatic variables (which explained 49% of the total
variation) using Latent Factor Mixed Models (25) (Table 2,
Table S3). We found 77, 100, 104, 97, 97, 58, 107 and 70
SNPs significantly associated with BIO11, BIO10, BIO5,
BIO1, BIO6, BIO9, BIO4 and BIO17, respectively (FDR-cor-
rected P < 0.05), with one SNP located on chromosome 16,
Climate_20, shared among seven variables. The SNPs were
broadly distributed across the genome and within 25 KB of
202 genes with a variety of functions (Table S3). We identified
five genes (BRACA1, RND2, CIITA, ICOS and UBE2C) that
were among the c. 300 genes found to be differentially
expressed in an RNA-seq analysis of thermal tolerance in
chickens (Zhang et al. 2017), two of which were physically
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linked (BRACA1 and RND2), and an additional five genes
(Ecel1, SLC23A2, NOX4, PIRT and GR1N1) with GO terms
related to other aspects of thermal tolerance, including respi-
ratory system process, oxidative stress and response to heat
(Rimoldi et al. 2015) (Table S4). Three of the five genes from
the poultry thermal stress study were found to be outliers in
association with BIO4, Temperature Seasonality (Fig. 3a).
Furthermore, targeted genotyping using Fluidigm SNPtype
assays for 18 of the top candidate SNPs in an additional 274
birds from 24 locations validated climate associations in 8/18
SNPs (FDR-corrected P < 0.05; Table S5). In particular, we
found a highly significant relationship between the Climate_20
SNP and seven of the eight top-ranked climate variables in
both the genome scan and validation results. While no link
between Climate_20 and genes linked to thermal tolerance in
birds was found, the highly significant relationship between
this SNP and climate variables reflective of the intensity of
summer heat waves, such as Mean Temperature of the Warm-
est Quarter (BIO10), suggests a potential role for this region
in climate adaptation (Fig. 3b, c and d).

Prediction of genomic mismatch and association between

vulnerability and abundance

Under a model of future climate change, genomic vulnerabil-
ity was predicted to be highest in the southern part of the wil-
low flycatcher range (Fig. 4a), corresponding to the range of
the southwestern willow flycatcher subspecies range. Overall,
highest genomic vulnerability occurred at sites with especially
low abundance, resulting in a significant negative correlation
between abundance and genetic vulnerability (r = �0.18;
P < 0.001; d.f. = 1382; Fig. 4b, c). Abundance of southwest-
ern willow flycatcher was low across sites and correlation

between abundance and vulnerability for this subspecies was
especially strong (r = �0.49; P = 0.016; d.f. = 27) and weakest
for the eastern subspecies region (traillii; r = �0.11;
P < 0.001; d.f. = 957). While there were regions of high and
low genomic vulnerability across the range, the southwestern
willow flycatcher subspecies had the highest overall median
genomic vulnerability score (Fig. 4d).

DISCUSSION

Climate envelope models are widely used to predict future spe-
cies distributions (Parmesan & Yohe 2003; Pacifici et al. 2015),
but such models do not account for complex biotic interactions
(competition, specialisation, co-evolution, etc.) or barriers to
dispersal that may limit range shifts (Williams et al. 2008). In
the case of the willow flycatcher, the capacity for range shifts
may be restricted by the need to be proximate to specific water
sources (Figgens & Finch 2015), making it important to incor-
porate the potential for adaptation into estimates of climate
vulnerability. Here, we move beyond species distribution mod-
elling to begin to identify populations that will need to adapt
most to keep pace with climate change. By calculating the dif-
ference between current genotype–environment relationships
and those predicted under future climate change, we identify
regions of highest vulnerability in the southern part of the
range. A comparison of the average genomic vulnerability
across all currently recognised subspecies strongly supports the
view that the endangered southwestern willow flycatcher is
most vulnerable to climate change. Significant correlations
between estimates of genomic vulnerability and abundance
from Breeding Bird Survey data confirm that already rare
populations in the Southwest and throughout the range have
the highest genomic vulnerability, suggesting that climate

Precipitation 
Driest 
Quarter 
(Bio17)

Mean Temp 
Coldest 
Quarter 
(Bio11)

Max Temp 
Warmest 
Month 
(BIO5)

Temp 
Seasonality 
(BIO4)

(a) (b)

Figure 2 Mapping gene–environment correlations across the willow flycatcher breeding range. (a) Principal components analysis of gradient forest-

transformed climate variables. Black dots represent the PC scores associated with the sampling locations, while colours are based upon modelled gene–
environment correlations from 100 000 random points across the breeding range. Arrows show the loadings of the top-ranked uncorrelated environmental

variables. (b) Gradient forest-transformed climate variables from the PCA mapped to geography support climate adaptation across the breeding range.

Black lines designating approximate subspecies locations support the idea that while subspecies are adapted to distinct ecological regions, climate adaption

is complex.
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change may have already had an impact on population decli-
nes in regions at the edge of the species niche. Our results
demonstrate how the incorporation of genotype–environment
relationships into models of climate vulnerability can improve
predictions of climate-induced impacts below the species
level.
Assessing the extent of intraspecific variation in climate tol-

erances is an important first step towards understanding spe-
cies vulnerability to climate change. Here, we investigate the
relationship between genetic, geographic and environmental
distance in the willow flycatcher and find consistent support
for the conclusion both geography and environment are

important to genetic divergence in the willow flycatcher
(Fig. S2). Mapping putatively adaptive genetic variation using
gradient forest-transformed climate variables supports the idea
that the Pacific Northwest, the Southwest, the East, and the
Inter-Mountain West harbour unique genotype–environment
correlations. More specifically, our results support the idea
that high maximum temperatures during the warmest month
(BIO5) are important to genotype–environment correlations in
the Southwest, while genotype–environment relationships in
the Pacific Northwest are driven by environmental variables
such as precipitation during the driest quarter (BIO17) and
mean temperatures during the coldest quarter (Figs 2 and 3).
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Figure 3 Candidate SNPs linked to temperature in the Willow flycatcher. (a) Manhattan plot showing the FDR-corrected signficance level for SNPs

associated with Temperature Seasonality (BIO4) and (b) Mean Temperature of the Warmest Quarter (BIO10). Dashed line represents P = 0.05. Colours

distinguish different chromosomes. Candidate genes linked to thermal tolerance in birds are highlighted by red stars and denoted with gene names, while

Climate_20, the SNP validated in B and C below, is denoted by a black triangle. No link between Climate_20 and genes linked to thermal tolerance in

birds was found, but the highly signi_cant relationship between this SNP and seven of the eight top-ranked climate variables (except temperature

seasonality shown in A above) in both the genome scan and validation results (Table S5) suggest a potential role for this region in climate adaptation. (c)

Relationship between Climate_20 and mean temperature of the warmest quarter in genome scan and SNP validation datasets. The allele frequencies from

the original genome scan data are denoted by squares, while allele frequencies based upon the validation set are denoted by circles. (d) The association

between Mean Temperature of the Warmest Quarter (BIO10) and Climate_20 across geographic space, with population allele frequencies colour coded

from high frequency (red) to low (yellow).
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In contrast, genotype–environment correlations in Inter-
Mountain West and Eastern populations, centre closer zero in
the PCA (Fig. 2a), indicating a more moderate impact of cli-
mate variables underlying climate adaptation in this area. In
sum, our results support the idea that genotype–environment
correlations in the willow flycatcher are complex, involving
multiple environmental variables and genomic regions and
such information can be used to help refine estimates of future
climate vulnerability.
Adaptation to local environments often occurs through nat-

ural selection acting on a large number of loci, each with a
small effect on phenotype (Orr 2005). Here, we identify puta-
tive loci important to local adaptation in the willow fly-
catcher, after accounting for underlying population structure,
and find between 58 and 107 SNPs significantly associated
with each of the top eight environmental variables (Table S3).
Independent validation of our top climate-associated SNPs in
274 new individuals from 24 populations revealed that eight
of our top 18 loci were likely robust to Type 1 error. While
such error is a problem common to all association studies
(McCarthy et al. 2008), the high number of false positives in
our data underscore the idea that genotype–environment asso-
ciations that cannot be validated should be interpreted with
caution. Highly significant associations between Climate_20
and seven of our eight top-ranked environmental variables in
both the genome scan and validation datasets provide the
strongest evidence for local adaptation across the willow

flycatcher genome (Fig. 3). While no associations between Cli-
mate_20 and genes known to be important to thermal toler-
ance in birds were identified, the relationship between allele
frequency variation in this SNP and Mean Temperature of
the Warmest Quarter (BIO5) suggests a potential role for this
region in adaptation to temperature extremes. Overall, our
results are in keeping with the idea that willow flycatchers
exhibit region-specific genotype-climate associations that
should be considered when assessing the capacity for endan-
gered populations of the southwestern willow flycatcher to
shift their range in response to rising global temperatures.
While genotype–environment correlations have been noted

across a variety of plant and animal systems, the mechanisms
behind such local adaptation remain less well understood.
Recent work on birds supports the idea that exposure to high
temperatures can result in dehydration and heat stress related
mortality (Albright et al. 2017; Zhang et al. 2017). As a first
step towards understanding the genomic basis of adaptation
to temperature in the willow flycatcher, we identify genes
within 25KB of our top ranking climate-associated SNPs
(Table S4). Our strongest evidence for genes and gene regions
that may be important to climate adaptation in this species
comes from the overlap between five genes in our panel
(BRACA1, RND2, CIITA, ICOS and UBE2C) and those that
were also found to be differentially expressed in a thermal tol-
erance study in poultry (Zhang et al. 2017). More specifically,
Zhang et al. (2016) concluded that expression of these genes
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Figure 4 Genomic Vulnerability and abundance in the Willow Flycatcher. (a) Map of genomic vulnerability across the Willow Flycatcher breeding range.

Red = high genomic vulnerability, blue = low genomic vulnerability, lines indicate subspecies boundaries. (b) Genomic Vulnerability vs. abundance based

upon the estimated mean number of birds/ route in 2011–2015 Breeding Bird Survey. (c) Estimates of relative abundance from the BBS based on inverse-

distance weighting interpolation. Points indicate the BBS routes where Willow Flycatchers have been recorded. Points in the grey areas fall in regions

where abundance was too low or distant from other detection routes to be included in the BBS spatial model. (d) Quantile box plots of the median

Genomic Vulnerability broken down by subspecies. Open circles represent outliers.
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was linked to the dissipation of heat through increased heart
pumping and blood circulation in smaller breeds of chickens.
These results are consistent with the recent work by Albright
et al. (2017) who found that small passerines in the Desert
Southwest were particularly prone to mortality resulting from
the failure to maintain body temperatures below lethal limits.
While more research is needed, it is possible that physiological
pathways responsible for overheating are related to those
involved in interspecific adaptation to temperature extremes.
Furthermore, while limited gene annotation information for
non-model organisms makes us cautious about placing signifi-
cance on GO term analyses (Stein 2001), we also note the
presence of five genes (Ecel1, SLC23A2, NOX4, PIRT and
GRIN1) with GO terms related to heat stress, thermal toler-
ance and oxidative stress. Future efforts will focus on validat-
ing gene-environment correlations at putative heat stress-
related loci as well as investigating the extent to which the
genes identified here may serve as a mechanism for adaptation
to temperature extremes in the willow flycatcher.
Desert ecosystems are home to some of the world’s rarest

species, many of which are already threatened by climate
change (Loarie et al. 2009). Methods for assessing climate
change impacts that rely on single species distribution models
may overlook the importance of local adaptation in the ability
of populations to respond to environmental shifts, potentially
leading to misplaced conservation efforts. The US Fish and
Wildlife Service was considering removing the southwestern
willow flycatcher from the endangered species list, in part
because of a single species distribution model that showed no
evidence of habitat specialisation across the range. Here, we
annotate the first willow flycatcher genome and use popula-
tion-level, genome-wide sequencing to show that willow fly-
catchers are not a single homogenous group, but a composite
of locally adapted populations with specific genotype–environ-
ment relationships related to differences in temperature
extremes. Clear evidence for local adaptation across the range
highlights the need for management efforts below the species
level if locally adapted populations are to be conserved. Esti-
mates of the mismatch between current genotype–environment
correlations and those predicted under future climate indicate
that the southwestern subspecies is at the greatest risk of cli-
mate-induced extinction. Our findings support the idea that
protection or enhancement of riparian thermal refuges (Chen
et al. 1999) within regions of lower genomic vulnerability in
the Desert Southwest may be the most effective strategy for
conserving remaining populations of flycatchers by buffering
them from temperature extremes.
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