Detailed report of the development of a satellite model utilizing flycatcher breeding territory data from six states as well as five years of tamarisk beetle defoliation data from the Lower Virgin River. Change detection showed a large shift in predicted habitat due to drought. A spatially explicit analysis showed a 94% decrease in predicted flycatcher habitat due to beetle defoliation on the Lower Virgin River. However, the model predicts that after beetle defoliation 64% and 45% of habitat will remain in the Lower Colorado and Gila River systems respectively.

Final report on population surveys for SWFL and YBCU in 2018 and 2019, apply existing habitat models to illustrate and predict past, current, and future habitat suitabilities for these two species, and update and standardize classification and mapping of riparian vegetation to reflect recent conditions along the lower 50 miles of the Santa Clara River.

 A study that planted 474 trees and measured their growth characteristics for more than a year. Logistic regression was used to evaluate whether tree height, elevation above the river channel, distance to existing cottonwood or coyote willow, soil conductivity, soil texture, planting depth, planting method (mechanical auger vs. hand-digging), and provision of natural and commercial supplements affected survival probability. The authors found that survival probability was greater in auger-dug than hand-dug holes and increased with elevation above the river channel bottom.

An in-depth System for Assessing Vulnerability of Species modeling effort that looks at two dozen threatened and endangered species and how they may be affected by a changing climate. The authors provide a numerical scale of risk based on possible changes in habitat, physiology, phenology, and interactions across a scale of uncertainties. Results and discussion of the most critical factor for each species are presented.

A Maximum Entropy presence-only habitat model developed to look at future climate-based habitat changes (2030, 2060, 2090) in the Rio Grande Corridor in NM for Lucy’s warbler, Southwestern willow flycatcher, and the Western yellow-billed cuckoo. Biophysical characteristics like distance to water proved to be more important than climate in habitat suitability predictions, but climate led to 60% declines of suitable habitat by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance.

A look at the potential for  southwestern willow flycatcher (Empidonax traillii extimus) adaptations to rising temperatures from an ecological genomics perspective. Compared to other willow flycatcher populations results indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change.

Habitat factsheets and scorecards describe the habitat needs and behaviors of species of interest in the Colorado State Wildlife Action Plan. This particular document is for Southwestern Willow Flycatcher. These habitat details and score cards can be used to analyze current habitat conditions and potential for improvement.

 

A publication that covers best practices when planting container plants. It focuses on trees but can be applied to any container plant.

Habitat factsheets and scorecards describe the habitat needs and behaviors of species of interest in the Colorado State Wildlife Action Plan. This particular document is for dabbling ducks and their utilization of seasonal shallow water wetlands. These habitat details and score cards can be used to analyze current habitat conditions and potential for improvement.

Each year, with the help of numerous partners across thirteen states and Mexico, RiversEdge West produces an annual distribution map that notes the presence and absence of Diorhabda spp. from sampling sites across the west. The links below contain all archived tamarisk beetle maps spanning over a decade.  

This report, contracted by the Utah Division of Wildlife Resources (UDWR) describes a vegetation-monitoring trip that was conducted on May 9-12, 2022, by John Leary (RiversEdge West) and Wally Macfarlane (Utah State University) from Bonanza Bridge to Asphalt Wash and a subsequent vegetation data analysis. The vegetation-monitoring trip and analysis evaluated the effectiveness of prior non-native vegetation removal efforts and established the baseline condition for planned upcoming treatments.

This study employs functional diversity metrics and guilds—suites of species with similar traits—to assess the influence of an invasive tree (Tamarix spp.) on riparian plant communities in the southwestern United States. Nine distinct guilds were identified with a gradient of functional diversity related to both tamarisk cover and environmental conditions. The identified guilds can be correlated to specific site conditions and can be used to anticipate plant community response to restoration efforts and in selecting appropriate species for revegetation.

Researchers looked at non-structural carbohydrate storage in different genotypes of Tamarix from an experimental common garden. Results suggest that Tamarix from colder locations cope with freeze events by maintaining large storage pools to support tissue regrowth, but with the trade-off of overall reduced growth and reproduction.

A look at several case studies from conservation practitioners and ornithological social scientists to highlight six core principles of translational ecology - an intentional approach in which researchers and practitioners from multiple disciplines collaborate on conservation management. The authors demonstrate how implementing collaboration, engagement, communication, commitment, process, and decision-framing can lead to improved conservation decision-making and delivery of outcomes applicable to specific management decisions.

A two-part study looking at how changes in soil salinity affect tamarisk growth and how beetle-induced defoliation affects tamarisk growing in soils with different salinities. Results showed that tamarisk plants grow better in soils with a similar salinity to their own origin site and that lower salinity does not benefit tamarisk plants adapted to higher saline conditions.

A look at beetle-occupied tamarisk sites 11-13 years after initial occupancy to determine long-term vegetative community response. Study found that Tamarix cover across sites initially declined an average of ca. 50% in response to the beetle, but then recovered. Changes in the associated plant community were small but supported common management goals, including a 47% average increase in cover of a native shrub (Salix exigua), and no secondary invasions by other non-native plants.

Development of a novel repellant compound for the potential management of the northern tamarisk beetle (Diorhabda carinulata). Repellant has been shown to be effective on reproductive adults and alter the behaviors of 1st and 2nd instar larvae. Continued development and field deployment of this repellent compound may provide a new tool for the management of D. carinulata.

Stahlke et al. developed a reference genome for tamarisk beetles (Diorhabda spp.) and reference panel of all four introduced parental species to monitor range expansion and hybridization across North America. They found a substantial genetic bottleneck among D. carinulata in N. America, although populations continue to establish and spread, possibly due to aggregation behavior. Among hybrids, they found that D. carinata, D. elongata, and D.